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From the Preface to the First Printing 

A great discovery solves a great problem but there is a 
grain of discovery in the solution of any problem. Your 
problem may be modest; but if it challenges your curios­
ity and brings into play your inventive faculties, and if 
you solve it by your own means, you may experience the 
tension and enjoy the triumph of discovery. Such experi­
ences at a susceptible age may create a taste for mental 
work and leave their imprint on mind and character for 
a lifetime. 

Thus, a teacher of mathematics has a great opportu­
nity. If he fills his allotted time with drilling his students 
in routine operations he kills their interest, hampers 
their intellectual development, and misuses his oppor­
tunity. But if he challenges the curiosity of his students 
by setting them problems proportionate to their knowl­
edge, and helps them to solve their problems with stimu­
lating questions, he may give them a taste for, and some 
means of, independent thinking. 

Also a student whose college curriculum includes some 
mathematics has a singular opportunity. This opportu­
nity is lost, of course, if he regards mathematics as a 
subject in which he has to earn so and so much credit 
and which he should forget after the final examination 
as quickly as possible. The opportunity may be lost even 
if the student has some natural talent for mathematics 
because he, as everybody else, must discover his talents 
and tastes; he cannot know that he likes raspberry pie if 
he has never tasted raspberry pie. He may manage to find 
out, however, that a mathematics problem may be as 
much fun as a crossword puzzle, or that vigorous mental 
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work may be an exercise as desirable as a fast game of 
tennis. Having tasted the pleasure in mathematics he will 
not forget it easily and then there is a good chance that 
mathematics will become something for him: a hobby, or 
a tool of his profession, or his profession, or a great 
ambition. 

The author remembers the time when he was a student 
himself, a somewhat ambitious student, eager to under­
stand a little mathematics and physics. He listened to 
lectures, read books, tried to take in the solutions and 
facts presented, but there was a question that disturbed 
him again and again: "Yes, the solution seems to work, 
it appears to be correct; but how is it possible to invent 
such a solution? Yes, this experiment seems to work, this 
appears to be a fact; but how can people discover such 
facts? And how could I invent or discover such things by 
myself?" Today the author is teaching mathematics in a 
university; he thinks or hopes that some of his more eager 
students ask similar questions and he tries to satisfy their 
curiosity. Trying to understand not only the solution of 
this or that problem but also the motives and procedures 
of the solution, and trying to explain these motives and 
procedures to others, he was finally led to write the 
present book. He hopes that it will be useful to teachers 
who wish to develop their students' ability to solve prob­
lems, and to students who are keen on developing their 
own abilities. 

Although the present book pays special attention to the 
requirements of students and teachers of mathematics, it 
should interest anybody concerned with the ways and 
means of invention and discovery. Such interest may be 
more widespread than one would assume without reflec­
tion. The space devoted by popular newspapers and 
magazines to crossword puzzles and other riddles seems 
to show that people spend some time in solving unprac-
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tical problems. Behind the desire to solve this or that 
problem that confers no material advantage, there may 
be a deeper curiosity, a desire to understand the ways and 
means, the motives and procedures, of solution. 

The following pages are written somewhat concisely, 
but as simply as possible, and are based on a long and 
serious study of methods of solution. This sort of study, 
called heuristic by some writers, is not in fashion now­
adays but has a long past and, perhaps, some future. 

Studying the methods of solving problems, we perceive 
another face of mathematics. Yes, mathematics has two 
faces; it is the rigorous science of Euclid but it is also 
something else. Mathematics presented in the Euclidean 
way appears as a systematic, deductive science; but mathe­
matics in the making appears as an experimental, in­
ductive science. Both aspects are as old as the science of 
mathematics itself. But the second aspect is new in one 
respect; mathematics "in statu nascendi," in the process 
of being invented, has never before been presented in 
quite this manner to the student, or to the teacher him­
self, or to the general public. 

The subject of heuristic has manifold connections; 
mathematicians, logicians, psychologists, educationalists, 
even philosophers may claim various parts of it as belong­
ing to their special domains. The author, well aware of 
the possibility of criticism from opposite quarters and 
keenly conscious of his limitations, has one claim to 
make: he has some experience in solving problems and 
in teaching mathematics on various levels. 

The subject is more fully dealt with in a more exten­
sive book by the author which is on the way to com­
pletion. 

Stanford University, August I, I944 
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From the Preface to the Seventh Printing 

I am glad to say that I have now succeeded in fulfilling, 
at least in part, a promise given in the preface to the 
first printing: The two volumes Induction and Analogy 
in Mathematics and Patterns of Plausible Inference which 
constitute my recent work Mathematics and Plausible 
Reasoning continue the line of thinking begun in How 
to Solve It. 

Zurich, August ;o, I954 
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Preface to the Second Edition 

The present second edition adds, besides a few minor 
improvements, a new fourth part, "Problems, Hints, 
Solutions." 

As this edition was being prepared for print, a study 
appeared (Educational Testing Service, Princeton, N.J.; 
cf. Time, June 18, 1956) which seems to have formu­
lated a few pertinent observations-they are not new to 
the people in the know, but it was high time to formu­
late them for the general public-: " ... mathematics has 
the dubious honor of being the least popular subject in 
the curriculum . .. Future teachers pass through the 
elementary schools learning to detest mathematics ... 
They return to the elementary school to teach a new 
generation to detest it." 

I hope that the present edition, designed for wider 
diffusion, will convince some of its readers that mathe­
matics, besides being a necessary avenue to engineering 
jobs and scientific knowledge, may be fun and may also 
open up a vista of mental activity on the highest level. 

Zurich, june 30, zg56 
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Foreword 

by John H. Conway 

How to Solve It is a wonderful book! This I realized when 
I first read right through it as a student many years ago, but 
it has taken me a long time to appreciate just how wonder­
ful it is. Why is that? One part of the answer is that the book 
is unique. In all my years as a student and teacher, I have 
never seen another that lives up to George Polya's title by 
teaching you how to go about solving problems. A. H. 
Schoenfeld correctly described its importance in his 1987 
article "Polya, Problem Solving, and Education" in Mathematics 

Magazine: "For mathematics education and the world of 
problem solving it marked a line of demarcation between 
two eras, problem solving before and after Polya." 

It is one of the most successful mathematics books ever 
written, having sold over a million copies and been translated 
into seventeen languages since it first appeared in 1945. 
Polya later wrote two more books about the art of doing 
mathematics, Mathematics and Plausible Reasoning ( 1954) and 
Mathematical Discovery (two volumes, 1962 and 1965). 

The book's title makes it seem that it is directed only 
toward students, but in fact it is addressed just as much to 
their teachers. Indeed, as Polya remarks in his introduction, 
the first part of the book takes the teacher's viewpoint more 
often than the student's. 

Everybody gains that way. The student who reads the book 
on his own will find that overhearing Polya's comments to his 
non-existent teacher can bring that desirable person into 
being, as an imaginary but very helpful figure leaning over 
one's shoulder. This is what happened to me, and naturally I 
made heavy use of the remarks I'd found most important 
when I myself started teaching a few years later. 

xix 
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But it was some time before I read the book again, and 
when I did, I suddenly realized that it was even more valuable 
than I'd thought! Many of Polya's remarks that hadn't 
helped me as a student now made me a better teacher of 
those whose problems had differed from mine. Polya had 
met many more students than I had, and had obviously 
thought very hard about how to best help all of them learn 
mathematics. Perhaps his most important point is that learn­
ing must be active. As he said in a lecture on teaching, 
"Mathematics, you see, is not a spectator sport. To under­
stand mathematics means to be able to do mathematics. And 
what does it mean [to be] doing mathematics? In the first 
place, it means to be able to solve mathematical problems." 

It is often said that to teach any subject well, one has to 
understand it "at least as well as one's students do." It is a 
paradoxical truth that to teach mathematics well, one must 
also know how to misunderstand it at least to the extent 
one's students do! If a teacher's statement can be parsed in 
two or more ways, it goes without saying that some students 
will understand it one way and others another, with results 
that can vary from the hilarious to the tragic. ]. E. Little­
wood gives two amusing examples of assumptions that can 
easily be made unconsciously and misleadingly. First, he 
remarks that the description of the coordinate axes ("Ox 
and Oy as in 2 dimensions, Ozvertical") in Lamb's book Me­
chanics is incorrect for him, since he always worked in an 
armchair with his feet up! Then, after asking how his reader 
would present the picture of a closed curve lying all on one 
side of its tangent, he states that there are four main schools 
(to left or right of vertical tangent, or above or below hori­
zontal one) and that by lecturing without a figure, presum­
ing that the curve was to the right of its vertical tangent, he 
had unwittingly made nonsense for the other three schools. 

I know of no better remedy for such presumptions than 
Polya's counsel: before trying to solve a problem, the stu-
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dent should demonstrate his or her understanding of its 
statement, preferably to a real teacher, but in lieu of that, to 
an imagined one. Experienced mathematicians know that 
often the hardest part of researching a problem is under­
standing precisely what that problem says. They often fol­
low Polya's wise advice: "If you can't solve a problem, then 
there is an easier problem you can't solve: find it." 

Readers who learn from this book will also want to learn 
about its author's life.1 

George Polya was born Gyorgy Polya (he dropped the 
accents sometime later) on December 13, 1887, in Buda­
pest, Hungary, to Jakab Polya and his wife, the former Anna 
Deutsch. He was baptized into the Roman Catholic faith, to 
which Jakab, Anna, and their three previous children,Jen6, 
Ilona, and Flora, had converted fromJudaism in the previ­
ous year. Their fifth child, Laszlo, was born four years later. 

Jakab had changed his surname from Pollak to the more 
Hungarian-sounding Polya five years before Gyorgy was 
born, believing that this might help him obtain a university 
post, which he eventually did, but only shortly before his 
untimely death in 1897. 

At the Daniel Berzsenyi Gymnasium, Gyorgy studied 
Greek, Latin, and German, in addition to Hungarian. It is 
surprising to learn that there he was seemingly uninterested 
in mathematics, his work in geometry deemed merely "sat­
isfactory" compared with his "outstanding" performance in 
literature, geography, and other subjects. His favorite sub­
ject, outside of literature, was biology. 

He enrolled at the University of Budapest in 1905, ini­
tially studying law, which he soon dropped because he 
found it too boring. He then obtained the certification 
needed to teach Latin and Hungarian at a gymnasium, a 

1The following biographical information is taken from that given by 
]. ]. O 'Connor and E. F. Robertson in the MacTutor History of 
Mathematics Archive (www-gap.dcs.st-and.ac.uk/ -history/ ). 
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certification that he never used but of which he remained 
proud. Eventually his professor, Bernat Alexander, advised 
him that to help his studies in philosophy, he should take 
some mathematics and physics courses. This was how he 
came to mathematics. Later, he joked that he "wasn't good 
enough for physics, and was too good for philosophy­
mathematics is in between." 

In Budapest he was taught physics by Eotvos and mathe­
matics by Fejer and was awarded a doctorate after spending 
the academic year 1910-11 in Vienna, where he took some 
courses by Wirtinger and Mertens. He spent much of the 
next two years in Gottingen, where he met many more 
mathematicians-Klein, Caratheodory, Hilbert, Runge, 
Landau, Weyl, Heeke, Courant, and Toeplitz-and in 1914 
visited Paris, where he became acquainted with Picard and 
Hadamard and learned that Hurwitz had arranged an 
appointment for him in Zurich. He accepted this position, 
writing later: "I went to Zurich in order to be near Hurwitz, 
and we were in close touch for about six years, from my 
arrival in Zurich in 1914 to his passing [in 1919]. I was very 
much impressed by him and edited his works." 

Of course, the First World War took place during this 
period. It initially had little effect on Polya, who had been 
declared unfit for service in the Hungarian army as the 
result of a soccer wound. But later when the army, more 
desperately needing recruits, demanded that he return to 
fight for his country, his strong pacifist views led him to 
refuse. As a consequence, he was unable to visit Hungary 
for many years, and in fact did not do so until 1967, fifty­
four years after he left. 

In the meantime, he had taken Swiss citizenship and 
married a Swiss girl, Stella Vera Weber, in 1918. Between 
1918 and 1919, he published papers on a wide range of 
mathematical subjects, such as series, number theory, com­
binatorics, voting systems, astronomy, and probability. He 
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was made an extraordinary professor at the Zurich ETH in 
1920, and a few years later he and Gabor Szeg6 published 
their book Aufgaben und Lehrsatze aus der Analysis ("Problems 
and Theorems in Analysis"), described by G. L. Alexander­
son and L. H. Lange in their obituary of Polya as "a math­
ematical masterpiece that assured their reputations." 

That book appeared in 1925, after Polya had obtained a 
Rockefeller Fellowship to work in England, where he col­
laborated with Hardy and Littlewood on what later became 
their book Inequalities (Cambridge University Press, 1936). 
He used a second Rockefeller Fellowship to visit Princeton 
University in 1933, and while in the United States was invited 
by H. F. Blichfeldt to visit Stanford University, which he 
greatly enjoyed, and which ultimately became his home. 
Polya held a professorship at Stanford from 1943 until his re­
tirement in 1953, and it was there, in 1978, that he taught 
his last course, in combinatorics; he died on September 7, 
198 5, at the age of ninety-seven. 

Some readers will want to know about Polya's many con­
tributions to mathematics. Most of them relate to analysis 
and are too technical to be understood by non-experts, but 
a few are worth mentioning. 

In probability theory, Polya is responsible for the now­
standard term "Central Limit Theorem" and for proving 
that the Fourier transform of a probability measure is a 
characteristic function and that a random walk on the inte­
ger lattice closes with probability 1 if and only if the dimen­
sion is at most 2. 

In geometry, Polya independently re-enumerated the 
seventeen plane crystallographic groups (their first enumer­
ation, by E. S. Fedorov, having been forgotten) and together 
with P. Niggli devised a notation for them. 

In combinatorics, Polya's Enumeration Theorem is now 
a standard way of counting configurations according to 
their symmetry. It has been described by R. C. Read as "a 
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remarkable theorem in a remarkable paper, and a land­
mark in the history of combinatorial analysis." 

How to Solve !twas written in German during Polya's time 
in Zurich, which ended in 1940, when the European situa­
tion forced him to leave for the United States. Despite the 
book's eventual success, four publishers rejected the 
English version before Princeton University Press brought 
it out in 1945· In their hands, How to Solve It rapidly 
became-and continues to be-one of the most successful 
mathematical books of all time. 



Introduction 

The following considerations are grouped around the 
preceding list of questions and suggestions entitled "How 
to Solve It." Any question or suggestion quoted from it 
will be printed in italics, and the whole list will be 
referred to simply as "the list" or as "our list." 

The following pages will discuss the purpose of the 
list, illustrate its practical use by examples, and explain 
the underlying notions and mental operations. By way of 
preliminary explanation, this much may be said: If, 
using them properly, you address these questions and 
suggestions to yourself, they may help you to solve your 
problem. If, using them properly, you address the same 
questions and suggestions to one of your students, you 
may help him to solve his problem. 

The book is divided into four parts. 
The title of the first part is "In the Classroom." It 

contains twenty sections. Each section will be quoted by 
its number in heavy type as, for instance, "section 7." 
Sections 1 to 5 discuss the "Purpose" of our list in gen­
eral terms. Sections 6 to 17 explain what are the "Main 
Divisions, Main Questions" of the list, and discuss a first 
practical example. Sections 18, 19, 20 add "More Ex­
amples." 

The title of the very short second part is "How to 
Solve It." It is written in dialogue; a somewhat idealized 
teacher answers short questions of a somewhat idealized 
student. 

The third and most extensive part is a "Short Diction­
ary of Heuristic"; we shall refer to it as the "Dictionary." 

XXV 
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It contains sixty-seven articles arranged alphabetically. 
For example, the meaning of the term HEURISTIC (set 
in small capitals) is explained in an article with this title 
on page 112. When the title of such an article is referred 
to within the text it will be set in small capitals. Certain 
paragraphs of a few articles are more technical; they are 
enclosed in square brackets. Some articles are fairly 
closely connected with the first part to which they add 
further illustrations and more specific comments. Other 
articles go somewhat beyond the aim of the first part of 
which they explain the background. There is a key­
article on MODERN HEURISTIC. It explains the connection 
of the main articles and the plan underlying the Diction­
ary; it contains also directions how to find information 
about particular items of the list. It must be emphasized 
that there is a common plan and a certain unity, because 
the articles of . the Dictionary show the greatest outward 
variety. There are a few longer articles devoted to the 
systematic though condensed discussion of some general 
theme; others contain more specific comments, still others 
cross-references, or historical data, or quotations, or 
aphorisms, or even jokes. 

The Dictionary should not be read too quickly; its text 
is often condensed, and now and then somewhat subtle. 
The reader may refer to the Dictionary for information 
about particular points. If these points come from his 
experience with his own problems or his own students, 
the reading has a much better chance to be profitable. 

The title of the fourth part is "Problems, Hints, Solu­
tions." It proposes a few problems to the more ambitious 
reader. Each problem is followed (in proper distance) by 
a "hint" that may reveal a way to the result which is 
explained in the "solution." 

We have mentioned repeatedly the "student" and the 
"teacher" and we shall refer to them again and again. It 
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may be good to observe that the "student" may be a high 
school student, or a college student, or anyone else who 
is studying mathematics. Also the "teacher" may be a 
high school teacher, or a college instructor, or anyone 
interested in the technique of teaching mathematics. The 
author looks at the situation sometimes from the point 
of view of the student and sometimes from that of the 
teacher (the latter case is preponderant in the first part). 
Yet most of the time (especially in the third part) the 
point of view is that of a person who is neither teacher 
nor student but anxious to solve the problem before him. 
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PART I. IN THE CLASSROOM 

PURPOSE 

I. Helping the student. One of the most important 
tasks of the teacher is to help his students. This task is 
not quite easy; it demands time, practice, devotion, and 
sound principles. 

The student should acquire as much experience of 
independent work as possible. But if he is left alone with 
his problem without any help or with insufficient help, 
he may make no progress at all. If the teacher helps too 
much, nothing is left to the student. The teacher should 
help, but not too much and not too little, so that the 
student shall have a reasonable share of the work. 

If the student is not able to do much, the teacher 
should leave him at least some illusion of independent 
work. In order to do so, the teacher should help the 
student discreetly, unobtrusively. 

The best is, however, to help the student naturally. 
The teacher should put himself in the student's place, he 
should see the student's case, he should try to understand 
what is going on in the student's mind, and ask a ques­
tion or indicate a step that could have occurred to the 
student himself. 

2. Questions, recommendations, mental operations. 
Trying to help the student effectively but unobtrusively 
and naturally, the teacher is led to ask the same questions 
and to indicate the same steps again and again. Thus, in 
countless problems, we have to ask the question: What 

1 
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is the unknown? We may vary the words, and ask the 
same thing in many different ways: What is required? 
What do you want to find? What are you supposed to 
seek? The aim of these questions is to focus the student's 
attention upon the unknown. Sometimes, we obtain the 
same effect more naturally with a suggestion: Look at the 
unknown! Question and suggestion aim at the same 
effect; they tend to provoke the same mental opera­
tion. 

It seemed to the author that it might be worth while to 
collect and to group questions and suggestions which are 
typically helpful in discussing problems with students. 
The list we study contains questions and suggestions of 
this sort, carefully chosen and arranged; they are equally 
useful to the problem-solver who works by himself. If the 
reader is sufficiently acquainted with the list and can see, 
behind the suggestion, the action suggested, he may real­
ize that the list enumerates, indirectly, mental operations 
typically useful for the solution of problems. These 
operations are listed in the order in which they are most 
likely to occur. 

3. Generality is an important characteristic of the 
questions and suggestions contained in our list. T ake the 
questions: What is the unknown? What are the data? 
What is the condition? These questions are generally 
applicable, we can ask them with good effect dealing 
with all sorts of problems. Their use is not restricted to 
any subject-matter. Our problem m ay be algebraic or 
geometric, mathematical or nonmathematical, theoretical 
or practical, a serious problem or a mere puzzle; it makes 
no difference, the questions make sense and might help 
us to solve the problem. 

There is a restriction, in fact, but it has nothing to do 
with the subject-matter. Certain questions and sugges­
tions of the list are applicable to "problems to find" only, 
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not to "problems to prove." If we have a problem of the 
latter kind we must use different questions; see PROBLEMS 

TO FIND, PROBLEMS TO PROVE. 

4. Common sense. The questions and suggestions of 
our list are general, but, except for their generality, they 
are natural, simple, obvious, and proceed from plain 
common sense. Take the suggestion: Look at the un­
known! And try to think of a familiar problem having 
the same or a similar unknown. This suggestion advises 
you to do what you would do anyhow, without any 
advice, if you were seriously concerned with your prob­
lem. Are you hungry? You wish to obtain food and you 
think of familiar ways of obtaining food. Have you a 
problem of geometric construction? You wish to con­
struct a triangle and you think of familiar ways of con­
structing a triangle. Have you a problem of any kind? 
You wish to find a certain unknown, and you think of 
familiar ways of finding such an unknown, or some simi­
lar unknown. If you do so you follow exactly the sug­
gestion we quoted from our list. And you are on the right 
track, too; the suggestion is a good one, it suggests to you 
a procedure which is very frequently successful. 

All the questions and suggestions of our list are natural, 
simple, obvious, just plain common sense; but they state 
plain common sense in general terms. They suggest a 
certain conduct which comes naturally to any person who 
is seriously concerned with his problem and has some 
common sense. But the person who behaves the right way 
usually does not care to express his behavior in clear 
words and, possibly, he cannot express it so; our list tries 
to express it so. 

5. Teacher and student. Imitation and practice. There 
are two aims which the teacher may have in view when 
addressing to his students a question or a suggestion of 
the list: First, to help the student to solve the problem 
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at hand. Second, to develop the student's ability so that 
he may solve future problems by himself. 

Experience shows that the questions and suggestions of 
our list, appropriately used, very frequently help the 
student. They have two common characteristics, common 
sense and generality; As they proceed from plain common 
sense they very often come naturally; they could have 
occurred to the student himself. As they are general, they 
help unobtrusively; they just indicate a general direction 
and leave plenty for the student to do. 

But the two aims we mentioned before are closely con­
nected; if the student succeeds in solving the problem at 
hand, he adds a little to his ability to solve problems. 
Then, we should not forget that our questions are gen­
eral, applicable in many cases. If the same question is 
repeatedly helpful, the student will scarcely fail to notice 
it and he will be induced to ask the question by himself 
in a similar situation. Asking the question repeatedly, he 
may succeed once in eliciting the right idea. By such a 
success, he discovers the right way of using the question, 
and then he has really assimilated it. 

The student may absorb a few questions of our list so 
well that he is finally able to put to himself the right 
question in the right moment and to perform the corre­
sponding mental operation naturally and vigorously. 
Such a student has certainly derived the greatest possible 
profit from our list. What can the teacher do in order to 
obtain this best possible result? 

Solving problems is a practical skill like, let us say, 
swimming. We acquire any practical skill by imitation 
and practice. Trying to swim, you imitate what other 
people do with their hands and feet to keep their heads 
above water, and, finally, you learn to swim by prac­
ticing swimming. Trying to solve problems, you have to 
observe and to imitate what other people do when solv-
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ing problems and, finally, you learn to do problems by 
doing them. 

The teacher who wishes to develop his students' ability 
to do problems must instill some interest for problems 
into their minds and give them plenty of opportunity for 
imitation and practice. If the teacher wishes to develop 
in his students the mental operations which correspond 
to the questions and suggestions of our list, he puts these 
questions and suggestions to the students as often as he 
can do so naturally. Moreover, when the teacher solves 
a problem before the class, he should dramatize his ideas 
a little and he should put to himself the same questions 
which he uses when helping the students. Thanks to such 
guidance, the student will eventually discover the right 
use of these questions and suggestions, and doing so he 
will acquire something that is more important than the 
knowledge of any particular mathematical fact. 

MAIN DIVISIONS, MAIN QUESTIONS 

6. Four phases. Trying to find the solution, we may re­
peatedly change our point of view, our way of looking 
at the problem. We have to shift our position again and 
again. Our conception of the problem is likely to be 
rather incomplete when we start the work; our out­
look is different when we have made some progress; it 
is again different when we have almost obtained the 
solution. 

In order to group conveniently the questions and sug­
gestions of our list, we shall distinguish four phases of 
the work. First, we have to understand the problem; we 
have to see clearly what is required. Second, we have to 
see how the various items are connected, how the un­
known is linked to the data, in order to obtain the idea 
of the solution, to make a plan. Third, we carry out our 
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plan. Fourth, we look back at the completed solution, 
we review and discuss it. 

Each of these phases has its importance. It may hap­
pen that a student hits upon an exceptionally bright 
idea and jumping all preparations blurts out with the 
solution. Such lucky ideas, of course, are most desirable, 
but something very undesirable and unfortunate may 
result if the student leaves out any of the four phases 
without having a good idea. The worst may happen if 
the student embarks upon computations or construc­
tions without having understood the problem. It is 
generally useless to carry out details without having seen 
the main connection, or having made a sort of plan. 
Many mistakes can be avoided if, carrying out his plan, 
the student checks each step. Some of the best effects may 
be lost if the student fails to reexamine and to reconsider 
the completed solution. 

7. Understanding the problem. It is foolish to answer 
a question that you do not understand. It is sad to work 
for an end that you do not desire. Such foolish and sad 
things often happen, in and out of school, but the teacher 
should try to prevent them from happening in his class. 
The student should understand the problem. But he 
should not only understand it, he should also desire its 
solution. If the student is lacking in understanding or in 
interest, it is not always his fault; the problem should be 
well chosen, not too difficult and not too easy, natural 
and interesting, and some time should be allowed for 
natural and interesting presentation. 

First of all, the verbal statement of the problem must 
be understood. The teacher can check this, up to a cer­
tain extent; he asks the student to repeat the statement, 
and the student should be able to state the problem 
fluently. The student should also be able to point out 
the principal parts of the problem, the unknown, the 
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data, the condition. Hence, the teacher can seldom afford 
to miss the questions: What is the unknown? Whai are 
the data? What is the condition? 

The student should consider the principal parts of the 
problem attentively, repeatedly, and from various sides. 
If there is a figure connected with the problem he should 
draw a figure and point out on it the unknown and the 
data. If it is necessary to give names to these objects he 
should introduce suitable notation; devoting some atten­
tion to the appropriate choice of signs, he is obliged to 
consider the objects for which the signs have to be chosen. 
There is another question which may be useful in this 
preparatory stage provided that we do not expect a 
definitive answer but just a provisional answer, a guess: 
Is it possible to satisfy the condition? 

(In the exposition of Part II [p. 33] "Understanding 
the problem" is subdivided into two stages: "Getting ac­
quainted" and "Working for better understanding.") 

8. Example. Let us illustrate some of the points ex­
plained in the foregoing section. We take the following 
simple problem: Find the diagonal of a rectangular paral­
lelepiped of which the length> the width> and the height 
are known. 

In order to discuss this problem profitably, the students 
must be familiar with the theorem of Pythagoras, and 
with some of its applications in plane geometry, but they 
may have very little systematic knowledge in solid geom­
etry. The teacher may rely here upon the student's un­
sophisticated familiarity with spatial relations. 

The teacher can make the problem interesting by 
making it concrete. The classroom is a rectangular paral­
lelepiped whose dimensions could be measured, and can 
be estimated; the students have to find, to "measure 
indirectly," the diagonal of the classroom. The teacher 
points out the length, the width, and the height of the 
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classroom, indicates the diagonal with a gesture, and 
enlivens his figure, drawn on the blackboard, by referring 
repeatedly to the classroom. 

The dialogue between the teacher and the students 
may start as follows: 

"What is the unknown?" 
"The length of the diagonal of a parallelepiped." 
"What are the data?'' 
"The length, the width, and the height of the parallele­

piped." 
"Introduce suitable notation. Which letter should de­

note the unknown?" 
"x." 

"Which letters would you choose for the length, the 
width, and the height?" 

"a, b, c." 
"What is the condition, linking a, b, c, and x?" 
"x is the diagonal of the parallelepiped of which a, b, 

and c are the length, the width, and the height." 
"Is it a reasonable problem? I mean, is the condition 

sufficient to determine the unknown?" 
"Yes, it is. If we know a, b, c, we know the parallele­

piped. If the parallelepiped is determined, the diagonal 
is determined." 

9. Devising a plan. We have a plan when we know, or 
know at least in outline, which calculations, computa­
tions, or constructions we have to perform in order to 
obtain the unknown. The way from understanding the 
problem to conceiving a plan may be long and tortuous. 
In fact, the main achievement in the solution of a prob­
lem is to conceive the idea of a plan. This idea may 
emerge gradually. Or, after apparently unsuccessful trials 
and a period of hesitation, it may occur suddenly, in a 
flash, as a "bright idea." The best that the teacher can do 
for the student is to procure for him, by unobtrusive 
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help, a bright idea. The questions and suggestions we are 
going to discuss tend to provoke such an idea. 

In order to be able to see the student's position, the 
teacher should think of his own experience, of his diffi­
culties and successes in solving problems. 

We know, of course, that it is hard to have a good idea 
if we have little knowledge of the subject, and impossible 
to have it if we have no knowledge. Good ideas are based 
on past experience and formerly acquired knowledge. 
Mere remembering is not enough for a good idea, but we 
cannot have any good idea without recollecting some 
pertinent facts; materials alone are not enough for con­
structing a house but we cannot construct a house with­
out collecting the necessary materials. The materials 
necessary for solving a mathematical problem are certain 
relevant items of our formerly acquired mathematical 
knowledge, as formerly solved problems, or formerly 
proved theorems. Thus, it is often appropriate to start 
the work with the question: Do you know a related 
problem? 

The difficulty is that there are usually too many prob­
lems which are somewhat related to our present problem, 
that is, have some point in common with it. How can we 
choose the one, or the few, which are really useful? There 
is a suggestion that puts our finger on an essential com­
mon point: Look at the unknown! And try to think of a 
familiar problem having the same or a similar unknown. 

If we succeed in recalling a formerly solved problem 
which is closely related to our present problem, we are 
lucky. We should try to deserve such luck; we may de­
serve it by exploiting it. Here is a problem related to 
yours and solved before. Could you use it? 

The foregoing questions, well understood and seriously 
considered, very often help to start the right train of 
ideas; but they cannot help always, they cannot work 
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magic. If they do not work, we must look around for some 
other appropriate point of contact, and explore the vari­
ous aspects of our problem; we have to vary, to transform, 
to modify the problem. Could you restate the problem? 
Some of the questions of our list hint specific means to 
vary the problem, as generalization, specialization, use of 
analogy, dropping a part of the condition, and so on; the 
details are important but we cannot go into them now. 
Variation of the problem may lead to some appropriate 
auxiliary problem: If you cannot solve the proposed 
problem try to solve first some related problem. 

Trying to apply various known problems or theorems, 
considering various modifications, experimenting with 
various auxiliary problems, we may stray so far from our 
original problem that we are in danger of losing it alto­
gether. Yet there is a good question that may bring us 
back to it: Did you use all the data? Did you use the 
whole condition? 

10. Example. We return to the example considered in 
section 8. As we left it, the students just succeeded in 
understanding the problem and showed some mild inter­
est in it. They could now have some ideas of their own, 
some initiative. If the teacher, having watched sharply, 
cannot detect any sign of such initiative he has to resume 
carefully his dialogue with the students. He must be pre­
pared to repeat with some modification the questions 
which the students do not answer. He must be prepared 
to meet often with the disconcerting silence of the 
students (which will be indicated by dots ..... ) . 

"Do you know a related problem?" 

"Look at the unknown! Do you know a problem hav­
ing the same unknown?" 

"Well, what is the unknown?" 
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"The diagonal of a parallelepiped." 
"Do you know any problem with the same unknown?" 
"No. We have not had any problem yet about the 

diagonal of a parallelepiped." 
''Do you know any problem with a similar unknown?" 

"You see, the diagonal is a segment, the segment of a 
straight line. Did you never solve a problem whose un­
known was the length of a line?" 

"Of course, we have solved such problems. For instance, 
to find a side of a right triangle." 

"Good! Here is a problem related to yours and solved 
before. Could you use it?" 

"You were lucky enough to remember a problem which 
is related to your present one and which you solved 

X 
c 

FIG. 1 

before. Would you like to use it? Could you introduce 
some auxiliary element in order to make its use possible?" 

"Look here, the problem you remembered is about a 
triangle. Have you any triangle in your figure?" 

Let us hope that the last hint was explicit enough to 
provoke the idea of the solution which is to introduce 
a right triangle, (emphasized in Fig. 1) of which the 
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required diagonal is the hypotenuse. Yet the teacher 
should be prepared for the case that even this fairly ex­
plicit hint is insufficient to shake the torpor of the stu­
dents; and so he should be prepared to use a whole 
gamut of more and more explicit hints. 

"Would you like to have a triangle in the figure?" 
"What sort of triangle would you like to have in the 

figure?" 
"You cannot find yet the diagonal; but you said that 

you could find the side of a triangle. Now, what will you 
do?" 

"Could you find the diagonal, if it were a side of a 
triangle?" 

When, eventually, with more or less help, the students 
succeed in introducing the decisive auxiliary element, the 
right triangle emphasized in Fig. 1, the teacher should 
convince himself that the students see sufficiently far 
ahead before encouraging them to go into actual calcula­
tions. 

"I think that it was a good idea to draw that triangle. 
You have now a triangle; but have you the unknown?" 

"The unknown is the hypotenuse of the triangle; we 
can calculate it by the theorem of Pythagoras." 

"You can, if both legs are known; but are they?" 
"One leg is given, it is c. And the other, I think, is not 

difficult to find. Yes, the other leg is the hypotenuse of 
another right triangle." 

"Very good! Now I see that you have a plan." 
ll. Carrying out the plan. To devise a plan, to con­

ceive the idea of the solution is not easy. It takes so much 
to succeed; formerly acquired knowledge, good mental 
habits, concentration upon the purpose, and one more 
thing: good luck. To carry out the plan is much easier; 
what we need is mainly patience. 

The plan gives a general outline; we have to convince 
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ourselves that the details fit into the outline, and so we 
have to examine the details one after the other, patiently, 
till everything is perfectly clear, and no obscure corner 
remains in which an error could be hidden. 

If the student has really conceived a plan, the teacher 
has now a relatively peaceful time. The main danger is 
that the student forgets his plan. This may easily happen 
if the student received his plan from outside, and ac­
cepted it on the authority of the teacher; but if he worked 
for it himself, even with some help, and conceived the 
final idea with satisfaction, he will not lose this idea 
easily. Yet the teacher must insist that the student should 
check each step. 

We may convince ourselves of the correctness of a step 
in our reasoning either "intuitively" or "formally." We 
may concentrate upon the point in question till we see 
it so clearly and distinctly that we have no doubt that 
the step is correct; or we may derive the point in ques­
tion according to formal rules. (The difference between 
"insight" and "formal proof" is clear enough in many 
important cases; we may leave further discussion to 
philosophers.) 

The main point is that the student should be honestly 
convinced of the correctness of each step. In certain cases, 
the teacher may emphasize the difference between "see­
ing" and "proving": Can you see clearly that the step is 
correct? But can you also prove that the step is correct? 

12. Example. Let us resume our work at the point 
where we left it at the end of section 10. The student, at 
last, has got the idea of the solution. He sees the right 
triangle of which the unknown x is the hypotenuse and 
the given height c is one of the legs; the other leg is the 
diagonal of a face. The student must, possibly, be urged 
to introduce suitable notation. He should choosey to de­
note that other leg, the diagonal of the face whose sides 
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are a and b. Thus, he may see more clearly the idea of the 
solution which is to introduce an auxiliary problem 
whose unknown is y. Finally, working at one right tri­
angle after the other, he may obtain (see Fig. 1) 

x2 = y2 + c2 

y2 = aZ + b2 

and hence, eliminating the auxiliary unknown y, 

x2 = a2 + bz + c2 

x = V a2 + b2 + c2 • 

The teacher has no reason to interrupt the student if 
he carries out these details correctly except, possibly, to 
warn him that he should check each step. Thus, the 
teacher rna y ask: 

"Can you see clearly that the triangle with sides x, y, c 
is a right triangle?" 

To this question the student may answer honestly 
"Yes" but he could be much embarrassed if the teacher, 
not satisfied with the intuitive conviction of the student, 
should go on asking: 

"But can you prove that this triangle is a right tri­
angle?" 

Thus, the teacher should rather suppress this question 
unless the class has had a good initiation in solid geome­
try. Even in the latter case, there is some danger that the 
answer to an incidental question may become the main 
difficulty for the majority of the students. 

13. Looking back. Even fairly good students, when 
they have obtained the solution of the problem and writ­
ten down neatly the argument, shut their books and look 
for something else. Doing so, they miss an important and 
instructive phase of the work. By looking back at the 
completed solution, by reconsidering and reexamining 
the result and the path that led to it, they could consoli-
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date their knowledge and develop their ability to solve 
problems. A good teacher should understand and impress 
on his students the view that no problem whatever is com­
pletely exhausted. There remains always something to do; 
with sufficient study and penetration, we could improve 
any solution, and, in any case, we can always improve our 
understanding of the solution. 

The student has now carried through his plan. He has 
written down the solution, checking each step. Thus, he 
should have good reasons to believe that his solution is 
correct. Nevertheless, errors are always possible, especially 
if the argument is long and involved. Hence, verifications 
are desirable. Especially, if there is some rapid and in­
tuitive procedure to test either the result or the argument, 
it should not be overlooked. Can you check the result? 
Can you check the argument? 

In order to convince ourselves of the presence or of the 
quality of an object, we like to see and to touch it. And 
as we prefer perception through two different senses, so 
we prefer conviction by two different proofs: Can you de­
rive the result differently? We prefer, of course, a short 
and intuitive argument to a long and heavy one: Can you 
see it at a glance? 

One of the first and foremost duties of the teacher is 
not to give his students the impression that mathematical 
problems have little connection with each other, and no 
connection at all with anything else. We have a natural 
opportunity to investigate the connections of a problem 
when looking back at its solution. The students will find 
looking back at the solution really interesting if they 
have made an honest effort, and have the consciousness 
of having done well. Then they are eager to see what else 
they could accomplish with that effort, and how they 
could do equally well another time. The teacher should 
encourage the students to imagine cases in which they 



16 In the Classroom 

could utilize again the procedure used, or apply the re­
sult obtained. Can you use the result, or the method, for 
some other problem? 

14. Example. In section 12, the students finally ob­
tained the solution: If the three edges of a rectangular 
parallelogram, issued from the same corner, are a, b, c, 
the diagonal is 

Va2 + b2 + c2• 

Can you check the result? The teacher cannot expect a 
good answer to this question from inexperienced stu­
dents. The students, however, should acquire fairly early 
the experience that problems "in letters" have a great 
advantage over purely numerical problems; if the prob­
lem is given "in letters" its result is accessible to several 
tests to which a problem "in numbers" is not susceptible 
at all. Our example, although fairly simple, is sufficient 
to show this. The teacher can ask several questions about 
the result which the students may readily answer with 
"Yes"; but an answer "No" would show a serious flaw in 
the result. 

"Did you use all the data? Do all the data a, b, c 
appear in your formula for the diagonal?" 

"Length, width, and height play the same role in our 
question; our problem is symmetric with respect to a, b, c. 
Is the expression you obtained for the diagonal sym­
metric in a, b, c? Does it remain unchanged when a, b, c 
are interchanged?" 

"Our problem is a problem of solid geometry: to find 
the diagonal of a parallelepiped with given dimensions 
a, b, c. Our problem is analogous to a problem of plane 
geometry: to find the diagonal of a rectangle with given 
dimensions a, b. Is the result of our 'solid' problem anal­
ogous to the result of the 'plane' problem?" 

"If the height c decreases, and finally vanishes, the 
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parallelepiped becomes a parallelogram. If you put c = o 
in your formula, do you obtain the correct formula for 
the diagonal of the rectangular parallelogram?" 

"If the height c increases, the diagonal increases. Does 
your formula show this?" 

"If all three measures a, b, c of the parallelepiped in­
crease in the same proportion, the diagonal also increases 
in the same proportion. If, in your formula, you substi­
tute 12a, 12b, 12c for a, b, c respectively, the expression of 
the diagonal, owing to this substitution, should also be 
multiplied by 12. Is that so?" 

"If a, b, c are measured in feet, your formula gives the 
diagonal measured in feet too; but if you change all meas­
ures into inches, the formula should remain correct. Is 
that so?" 

(The two last questions are essentially equivalent; see 
TEST BY DIMENSION.) 

These questions have several good effects. First, an in­
telligent student cannot help being impressed by the fact 
that the formula passes so many tests. He was convinced 
before that the formula is correct because he derived it 
carefully. But now he is more convinced, and his gain in 
confidence comes from a different source; it is due to a 
sort of "experimental evidence." Then, thanks to the 
foregoing questions, the details of the formula acquire 
new significance, and are linked up with various facts. 
The formula has therefore a better chance of being re­
membered, the knowledge of the student is consolidated. 
Finally, these questions can be easily transferred to simi­
lar problems. After some experience with similar prob­
lems, an intelligent student may perceive the underlying 
general ideas: use of all relevant data, variation of the 
data, symmetry, analogy. If he gets into the habit of 
directing his attention to such points, his ability to solve 
problems may definitely profit. 
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Can you check the argument? To recheck the argument 
step by step may be necessary in difficult and important 
cases. Usually, it is enough to pick out "touchy" points 
for rechecking. In our case, it may be advisable to discuss 
retrospectively the question which was less advisable to 
discuss as the solution was not yet attained: Can you 
prove that the triangle with sides x, y, c is a right tri­
angle? (See the end of section 12.) 

Can you use the result or the method for some other 
problem? With a little encouragement, and after one or 
two examples, the students easily find applications which 
consist essentially in giving some concrete interpretation 
to the abstract mathematical elements of the problem. 
The teacher himself used such a concrete interpretation 
as he took the room in which the discussion takes place 
for the parallelepiped of the problem. A dull student may 
propose, as application, to calculate the diagonal of the 
cafeteria instead of the diagonal of the classroom. If the 
students do not volunteer more imaginative remarks, the 
teacher himself may put a slightly different problem, for 
instance: "Being given the length, the width, and the 
height of a rectangular parallelepiped, find the distance 
of the center from one of the corners." 

The students may use the result of the problem they 
just solved, observing that the distance required is one 
half of the diagonal they just calculated. Or they may use 
the method, introducing suitable right triangles (the 
latter alternative is less obvious and somewhat more 
clumsy in the present case). 

After this application, the teacher may discuss the con­
figuration of the four diagonals of the parallelepiped, 
and the six pyramids of which the six faces are the bases, 
the center the common vertex, and the semidiagonals the 
lateral edges. When the geometric imagination of the 
students is sufficiently enlivened, the teacher should come 
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back to his question: Can you use the result, or the 
method, for some other problem? Now there is a better 
chance that the students may find some more interesting 
concrete interpretation, for instance, the following: 

"In the center of the flat rectangular top of a building 
which is 21 yards long and 16 yards wide, a flagpole is to 
be erected, 8 yards high. To support the pole, we need 
four equal cables. The cables should start from the same 
point, 2 yards under the top of the pole, and end at the 
four corners of the top of the building. How long is each 
cable?" 

The students may use the method of the problem they 
solved in detail introducing a right triangle in a vertical 
plane, and another one in a horizontal plane. Or they 
may use the result, imagining a rectangular parallele­
piped of which the diagonal, x, is one of the four cables 
and the edges are 

b=S c= 6. 

By straightforward application of the formula, x = 14·5· 
For more examples, see CAN YOU USE THE RESULT? 
15. Various approaches. Let us still retain, for a while, 

the problem we considered in the foregoing sections 8, 
10, 12, 14. The main work, the discovery of the plan, was 
described in section 10. Let us observe that the teacher 
could have proceeded differently. Starting from the same 
point as in section 10, he could have followed a somewhat 
different line, asking the following questions: 

"Do you know any related problem?" 
"Do you know an analogous problem?" 
"You see, the proposed problem is a problem of solid 

geometry. Could you think of a simpler analogous prob­
lem of plane geometry?" 

"You see, the proposed problem is about a figure in 
space, it is concerned with the diagonal of a rectangular 
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parallelepiped. What might be an analogous problem 
about a figure in the plane? It should be concerned with 
-the diagonal-of-a rectangular-" 

"Parallelogram." 
The students, even if they are very slow and indiffer­

ent, and were not able to guess anything before, are 
obliged finally to contribute at least a minute part of the 
idea. Besides, if the students are so slow, the teacher 
should not take up the present problem about the paral­
lelepiped without having discussed before, in order to 
prepare the students, the analogous problem about the 
parallelogram. Then, he can go on now as follows: 

"Here is a problem related to yours and solved before. 
Can you use it?" 

"Should you introduce some auxiliary element in order 
to make its use possible?" 

Eventually, the teacher may succeed in suggesting to 
the students the desirable idea. It consists in conceiving 
the diagonal of the given parallelepiped as the diagonal 
of a suitable parallelogram which must be introduced 
into the figure (as intersection of the parallelepiped with 
a plane passing through two opposite edges). The idea is 
essentially the same as before (section 10) but the ap­
proach is different. In section 10, the contact with the 
available knowledge of the students was established 
through the unknown; a formerly solved problem was 
recollected because its unknown was the same as that of 
the proposed problem. In the present section analogy 
provides the contact with the idea of the solution. 

16. The teacher's method of questioning shown in the 
foregoing sections 8, 10, 12, 14, 15 is essentially this: 
Begin with a general question or suggestion of our list, 
and, if necessary, come down gradually to more specific 
and concrete questions or suggestions till you reach one 
which elicits a response in the student's mind. If you 
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have to help the student exploit his idea, start again, if 
possible, from a general question or suggestion contained 
in the list, and return again to some more special one if 
necessary; and so on. 

Of course, our list is just a first list of this kind; it 
seems to be sufficient for the majority of simple cases, but 
there is no doubt that it could be perfected. It is impor­
tant, however, that the suggestions from which we start 
should be simple, natural, and general, and that their list 
should be short. 

The suggestions must be simple and natural because 
otherwise they cannot be unobtrusive. 

The suggestions must be general, applicable not only 
to the present problem but to problems of all sorts, if 
they are to help develop the ability of the student and not 
just a special technique. 

The list must be short in order that the questions may 
be often repeated, unartificially, and under varying cir­
cumstances; thus, there is a chance that they will be 
eventually assimilated by the student and will contribute 
to the development of a mental habit. 

It is necessary to come down gradually to specific sug­
gestions, in order that the student may have as great a 
share of the work as possible. 

This method of questioning is not a rigid one; for­
tunately so, because, in these matters, any rigid, mechani­
cal, pedantical procedure is necessarily bad. Our method 
admits a certain elasticity and variation, it admits various 
approaches (section 15) , it can be and should be so 
applied that questions asked by the teacher could have 
occurred to the student himself. 

If a reader wishes to try the method here proposed in 
his class he should, of course, proceed with caution. He 
should study carefully the example introduced in section 
8, and the following examples in sections 18, 19, 20. He 
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should prepare carefully the examples which he intends 
to discuss, considering also various approaches. He should 
start with a few trials and find out gradually how he can 
manage the method, how the students take it, and how 
much time it takes. 

17. Good questions and bad questions. If the method 
of questioning formulated in the foregoing section is well 
understood it helps to judge, by comparison, the quality 
of certain suggestions which may be offered with the in­
tention of helping the students. 

Let us go back to the situation as it presented itself at 
the beginning of section 10 when the question was asked: 
Do you know a related problem? Instead of this, with the 
best intention to help the students, the question may be 
offered: Could you apply the theorem of Pythagoras? 

The intention may be the best, but the question is about 
the worst. We must realize in what situation it was of­
fered; then we shall see that there is a long sequence of 
objections against that sort of "help." 

(1) If the student is near to the solution, he may un­
derstand the suggestion implied by the question; but if 
he is not, he quite possibly will not see at all the point at 
which the question is driving. Thus the question fails to 
help where help is most needed. 

(2) If the suggestion is understood, it gives the whole 
secret away, very little remains for the student to do. 

(3) The suggestion is of too special a nature. Even if 
the student can make use of it in solving the present 
problem, nothing is learned for future problems. The 
question is not instructive. 

(4) Even if he understands the suggestion, the student 
can scarcely understand how the teacher came to the idea 
of putting such a question. And how could he, the stu­
dent, find such a question by himself? It appears as an 
unnatural surprise, as a rabbit pulled out of a hat; it is 
really not instructive. 



I8. A Problem of Construction 

None of these objections can be raised against the pro­
cedure described in section 10, or against that in sec­
tion 15. 

MORE EXAMPLES 

18. A problem of construction. Inscribe a square in a 
given triangle. Two vertices of the square should be on 
the base of the triangle, the two other vertices of the 
square on the two other sides of the triangle, one on each. 

"What is the unknown?" 
"A square." 
"What are the data?" 
"A triangle is given, nothing else." 
"What is the condition?" 
"The four corners of the square should be on the per­

imeter of the triangle, two corners on the base, one cor­
ner on each of the other two sides." 

"Is it possible to satisfy the condition?" 
"I think so. I am not so sure." 
"You do not seem to find the problem too easy. If you 

cannot solve the proposed problem, try to solve first some 
related problem. Could you satisfy a part of the con­
dition?" 

"What do you mean by a part of the condition?" 
"You see, the condition is concerned with all the ver­

tices of the square. How many vertices are there?" 
"Four." 
"A part of the condition would be concerned with less 

than four vertices. Keep only a part of the condition, 
drop the other part. What part of the condition is easy 
to satisfy?" 

"It is easy to draw a square with two vertices on the 
perimeter of the triangle-or even one with three vertices 
on the perimeter!" 

"Draw a figure!" 
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The student draws Fig. 2. 

"You kept only a part of the condition, and you 
dropped the other part. How far is the unknown now 
determined?" 

FIG. 2 

"The square is not determined if it has only three 
vertices on the perimeter of the triangle." 

"Good! Draw a figure." 
The student draws Fig. 3· 

FIG. 3 

"The square, as you said, is not determined by the part 
of the condition you kept. How can it vary?" 

"Three corners of your square are on the perimeter of 
the triangle but the fourth corner is not yet there where 
it should be. Your square, as you said, is undetermined, 
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it can vary; the same is true of its fourth corner. How 
can it vary?" 

"Try it experimentally, if you wish. Draw more squares 
with three comers on the perimeter in the same way as 
the two squares already in the figure. Draw small squares 
and large squares. What seems to be the locus of the 
fourth corner? How can it vary?" 

The teacher brought the student very near to the 
idea of the solution. If the student is able to guess that 
the locus of the fourth corner is a straight line, he has 
got it. 

19. A problem to prove. Two angles are in different 
planes but each side of one is parallel to the correspond­
ing side of the other, and has also the same direction. 
Prove that such angles are equal. 

What we have to prove is a fundamental theorem of 
solid geometry. The problem may be proposed to stu­
dents who are familiar with plane geometry and ac­
quainted with those few facts of solid geometry which 
prepare the present theorem in Euclid's Elements. (The 
theorem that we have stated and are going to prove is the 
proposition 10 of Book XI of Euclid.) Not only ques­
tions and suggestions quoted from our list are printed 
in italics but also others which correspond to them as 
"problems to prove" correspond to "problems to find." 
(The correspondence is worked out systematically m 

PROBLEMS TO FIND, PROBLEMS TO PROVE 5• 6.) 
"What is the hypothesis?" 
"Two angles are in different planes. Each side of one 

is parallel to the corresponding side of the other, and has 
also the same direction. 

"What is the conclusion?" 
"The angles are equal." 
"Draw a figure. Introduce suitable notation." 
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The student draws the lines of Fig. 4 and chooses, 
helped more or less by the teacher, the letters as in Fig. 4· 

"What is the hypothesis? Say it, please, using your nota­
tion." 

"A , B, C are not in the same plane as A', B', C'. And 
AB II A'B') AC II A'C'. Also AB has the same direction as 
A'B', and AC the same as A'C'." 

FIG. 4 

"What is the conclusion?" 
"LBAC = LB' A'C'." 
"Look at the conclusion! And try to think of a familiar 

theorem having the same or a similar conclusion." 
"If two triangles are congruent, the corresponding 

angles are equal." 
"Very good! Now here is a theorem related to yours 

and proved before. Could you use it?" 
"I think so but I do not see yet quite how." 
"Shouldyou introduce some auxiliary element in order 

to make its use possible?" 

"Well, the theorem which you quoted so well is about 
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triangles, about a pair of congruent triangles. Have you 
any triangles in your figure?" 

"No. But I could introduce some. Let me join B to C) 
and B' to C'. Then there are two triangles, 6, ABC) 
6. A'B'C'." 

"Well done. But what are these triangles good for?" 
"To prove the conclusion, LBAC = LB'A'C'." 
"Good! If you wish to prove this, what kind of tri-

angles do you need?" 

c• 
A' 

B' 

c 
A 

B 
FIG. 5 

"Congruent triangles. Yes, of course, I may choose B) 
C) B') C' so that 

AB = A' B') A C = A'C'." 

"Very good! Now, what do you wish to prove?" 
"I wish to prove that the triangles are congruent, 

6. ABC= 6. A'B'C'. 

If I could prove this, the conclusion LBAC = LB'A'C' 
would follow immediately." 

"Fine! You have a new aim, you aim at a new conclu· 
sion. Look at the conclusion! And try to think of a 
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familiar theorem having the same or a similar conclu­
sion." 

"Two triangles are congruent if-if the three sides of 
the one are equal respectively to the three sides of the 
other." 

"Well done. You could have chosen a worse one. Now 
here is a theorem related to yours and proved before. 
Could you use it?" 

"I could use it if I knew that BC = B'C'." 
"That is right! Thus, what is your aim?" 
"To prove that BC = B'C'." 
"Try to think of a familiar theorem having the same or 

a similar conclusion." 
"Yes, I know a theorem finishing: ' ... then the two 

lines are equal.' But it does not fit in." 
"Should you introduce some auxiliary element in order 

to make its use possible?" 

"You see, how could you prove BC = B'C' when there 
is no connection in the figure between BC and B'C'?" 

"Did you use the hypothesis? What is the hypothesis?" 
"We suppose that AB II A'B', AC II A'C'. Yes, of course, 

I must use that." 
"Did you use the whole hypothesis? You say that AB II 

A'B'. Is that all that you know about these lines?" 
"No; AB is also equal to A'B', by construction. They 

are parallel and equal to each other. And so are AC and 
A'C'." 

"Two parallel lines of equal length-it is an interesting 
configuration. Have you seen it before?" 

"Of course! Yes! Parallelogram! Let me join A to A', 
B to B', and C to C'." 

"The idea is not so bad. How many parallelograms 
have you now in your figure?" 

"Two. No, three. No, two. I mean, there are two of 
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which you can prove immediately that they are paral­
lelograms. There is a third which seems to be a parallelo­
gram; I hope I can prove that it is one. And then the 
proof will be finished!" 

We could have gathered from his foregoing answers 
that the student is intelligent. But after this last remark 
of his, there is no doubt. 

This student is able to guess a mathematical result and 
to distinguish clearly between proof and guess. He knows 
also that guesses can be more or less plausible. Really, he 
did profit something from his mathematics classes; he 
has some real experience in solving problems, he can 
conceive and exploit a good idea. 

20. A rate problem. Water is flowing into a conical 
vessel at the rate r. The vessel has the shape of a right 
circular cone, with horizontal base, the vertex pointing 
downwards; the radius of the base is a, the altitude of the 

FIG. 6 

cone b. Find the rate at which the surface is rising when 
the depth of the water is y. Finally, obtain the numerical 
value of the unknown supposing that a = 4 ft., b = 3 ft., 
r = 2 cu. ft . per minute, and y = 1 ft. 

The students are supposed to know the simplest rules 
of differentiation and the notion of "rate of change." 

"What are the data?" 
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"The radius of the base of the cone a - 4 ft., the alti­
tude of the cone b - 3 ft., the rate at which the water is 
flowing into the vessel r == 2 cu. ft. per minute, and the 
depth of the water at a certain moment, y = 1 ft." 

"Correct. The statement of the problem seems to sug­
gest that you should disregard, provisionally, the numeri­
cal values, work with the letters, express the unknown in 
terms of a, b, r, y and only finally, after having obtained 
the expression of the unknown in letters, substitute the 
numerical values. I would follow this suggestion. Now, 
what is the unknown?" 

"The rate at which the surface is rising when the depth 
of the water is y." 

"What is that? Could you say it in other terms?" 
"The rate at which the depth of the water is in-

creasing." 
"What is that? Could you restate it still differently?" 
"The rate of change of the depth of the water." 
"That is right, the rate of change of y. But what is the 

rate of change? Go back to the definition." 
"The derivative is the rate of change of a function." 
"Correct. Now, is y a function? As we said before, we 

disregard the numerical value of y. Can you imagine that 
y changes?" 

"Yes, y, the depth of the water, increases as the time 
goes by." 

"Thus, y is a function of what?" 
"Of the time t." 
"Good. Introduce suitable notation. How would you 

write the 'rate of change of y' in mathematical symbols?" 

"dy " 
dt 

"Good. Thus, this is your unknown. You have to ex­
press it in terms of a, b, r, y. By the way, one of these data 
is a 'rate.' Which one?" 
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"r is the rate at which water is flowing into the vessel." 
"What is that? Could you say it in other terms?" 
"r is the rate of change of the volume of the water in 

the vessel." 
"What is that? Could you restate it still differently? 

How would you write it in suitable notation?" 

" dV , 
r = dt' 

"What is V?" 
"The volume of the water in the vessel at the time t." 

"Good. Thus, you have to express 1e in terms of a, b, 

dV H "II d . ?" dt ,y. ow Wl you o It 

"If you cannot solve the proposed problem try to solve 
first some related problem. If you do not see yet the con-

nection between 1e and the data, try to bring in some 

simpler connection that could serve as a stepping stone." 

"Do you not see that there are other connections? For 
instance, are y and V independent of each other?" 

"No. When y increases, V must increase too." 
"Thus, there is a connection. What is the connection?" 
"Well, Vis the volume of a cone of which the altitude 

is y. But I do not know yet the radius of the base." 
"You may consider it, nevertheless. Call it something, 

say x." 
2 

"V = 1rX y ." 
3 

"Correct. Now, what about x? Is it independent of y?" 
"No. When the depth of the water, y, increases the 

radius of the free surface, x, increases too." 
"Thus, there is a connection. What is the connection?" 
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"Of course, similar triangles. 

x:y=a:b." 

"One more connection, you see. I would not miss 
profiting from it. Do not forget, you wished to know the 
connection between V and y." 

"I have 

X= ay 
b 

2 3 
V = 'Ira y ·" 

sbz 

"Very good. This looks like a stepping stone, does it 
not? But you should not forget your goal. What is the 
unknown?" 

"Well dy ·" 
' dt 

"You have to find a connection between 1e , ~, and 

other quantities. And here you have one between Y~ VJ 
and other quantities. What to do?" 

"Differentiate! Of course! 

dV 1ra2y2 dy 
Tt= IT dt. 

Here it is." 
"Fine! And what about the numerical values?" 

dV 
"If a = 4 b = 3 - = r = 2 y = 1 then 

' ' dt ' ' 

1r X r6 X r dy , 
2= 9 dt' 



PART II. HOW TO SOLVE IT 
A DIALOGUE 

Getting Acquainted 

Where should I start? Start from the statement of the 
problem. 

What can I do? Visualize the problem as a whole as 
clearly and as vividly as you can. Do not concern your­
self with details for the moment. 

What can I gain by doing so? You should understand 
the problem, familiarize yourself with it, impress its pur­
pose on your mind. The attention bestowed on the prob­
lem may also stimulate your memory and prepare for the 
recollection of relevant points. 

Working for Better Understanding 

Where should I start? Start again from the statement 
of the problem. Start when this statement is so clear to 
you and so well impressed on your mind that you may 
lose sight of it for a while without fear of losing it alto­
gether. 

What can I do? Isolate the principal parts of your 
problem. The hypothesis and the conclusion are the 
principal parts of a "problem to prove"; the unknown, 
the data, and the conditions are the principal parts of a 
"problem to find." Go through the principal parts of 
your problem, consider them one by one, consider them 
in turn, consider them in various combinations, relating 
each detail to other details and each to the whole of the 
problem. 

33 
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What can I gain by doing so? You should prepare and 
clarify details which are likely to play a role afterwards. 

Hunting for the Helpful Idea 

Where should I start? Start from the consideration of 
the principal parts of your problem. Start when these 
principal parts are distinctly arranged and clearly con­
ceived, thanks to your previous work, and when your 
memory seems responsive. 

What can I do? Consider your problem from various 
sides and seek contacts with your formerly acquired 
knowledge. 

Consider your problem from various sides. Emphasize 
different parts, examine different details, examine the 
same details repeatedly but in different ways, combine 
the details differently, approach them from different 
sides. Try to see some new meaning in each detail, some 
new interpretation of the whole. 

Seek contacts with your formerly acquired knowledge. 
Try to think of what helped you in similar situations in 
the past. Try to recognize something familiar in what you 
examine, try to perceive something useful in what you 
recognize. 

What could I perceive? A helpful idea, perhaps a de­
cisive idea that shows you at a glance the way to the very 
end. 

How can an idea be helpful? It shows you the whole of 
the way or a part of the way; it suggests to you more or 
less distinctly how you can proceed. Ideas are more 
or less complete. You are lucky if you have any idea at 
alL 

What can I do with an incomplete idea? You should 
consider it. If it looks advantageous you should consider 
it longer. If it looks reliable you should ascertain how 
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far it leads you, and reconsider the situation. The situa­
tion has changed, thanks to your helpful idea. Consider 
the new situation from various sides and seek contacts 
with your formerly acquired knowledge. 

What can I gain by doing so again? You may be lucky 
and have another idea. Perhaps your next idea will lead 
you to the solution right away. Perhaps you need a few 
more helpful ideas after the next. Perhaps you will be 
led astray by some of your ideas. Nevertheless you should 
be grateful for all new ideas, also for the lesser ones, also 
for the hazy ones, also for the supplementary ideas add­
ing some precision to a hazy one, or attempting the cor­
rection of a less fortunate one. Even if you do not have 
any appreciable new ideas for a while you should be 
grateful if your conception of the problem becomes more 
complete or more coherent, more homogeneous or better 
balanced. 

Carrying Out the Plan 

Where should I start? Start from the lucky idea that 
led you to the solution. Start when you feel sure of your 
grasp of the main connection and you feel confident that 
you can supply the minor details that may be wanting. 

What can I do? Make your grasp quite secure. Carry 
through in detail all the algebraic or geometric opera­
tions which you have recognized previously as feasible. 
Convince yourself of the correctness of each step by for­
mal reasoning, or by intuitive insight, or both ways if you 
can. If your problem is very complex you may distin­
guish "great" steps and "small" steps, each great step 
being composed of several small ones. Check first the 
great steps, and get down to the smaller ones afterwards. 

What can I gain by doing so? A presentation of the 
solution each step of which is correct beyond doubt. 
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Looking Back 

Where should I start? From the solution, complete and 
correct in each detail. 

What can I do? Consider the solution from various 
sides and seek contacts with your formerly acquired 
knowledge. 

Consider the details of the solution and try to make 
them as simple as you can; survey more extensive parts 
of the solution and try to make them shorter; try to see 
the whole solution at a glance. Try to modify to their 
advantage smaller or larger parts of the solution, try to 
improve the whole solution, to make it intuitive, to fit it 
into your formerly acquired knowledge as naturally as 
possible. Scrutinize the method that led you to the 
solution, try to see its point, and try to make use of it for 
other problems. Scrutinize the result and try to make use 
of it for other problems. 

What can I gain by doing so? You may find a new and 
better solution, you may discover new and interesting 
facts. In any case, if you get into the habit of surveying 
and scrutinizing your solutions in this way, you will 
acquire some knowledge well ordered and ready to use, 
and you will develop your ability of solving problems. 



PART III. SHORT DICTIONARY 
OF HEURISTIC 

Analogy is a sort of similarity. Similar objects agree 
with each other in some respect, analogous objects agree 
in certain relations of their respective parts. 

1. A rectangular parallelogram is analogous to a rec­
tangular parallelepiped. In fact, the relations between 
the sides of the parallelogram are similar to those be­
tween the faces of the parallelepiped: 

Each side of the parallelogram is parallel to just one 
other side, and is perpendicular to the remaining sides. 

Each face of the parallelepiped is parallel to just one 
other face, and is perpendicular to the remaining faces. 

Let us agree to call a side a "bounding element" of the 
parallelogram and a face a "bounding element" of the 
parallelepiped. Then, we may contract the two fore­
going statements into one that applies equally to both 
figures: 

Each bounding element is parallel to just one other 
bounding element and is perpendicular to the remaining 
bounding elements. 

Thus, we have expressed certain relations which are 
common to the two systems of objects we compared, sides 
of the rectangle and faces of the rectangular parallele­
piped. The analogy of these systems consists in this com­
munity of relations. 

2. Analogy pervades all our thinking, our everyday 
speech and our trivial conclusions as well as artistic 
ways of expression and the highest scientific achieve­
ments. Analogy is used on very different levels. People 
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often use vague, ambiguous, incomplete, or incompletely 
clarified analogies, but analogy may reach the level of 
mathematical precision. All sorts of analogy may play a 
role in the discovery of the solution and so we should 
not neglect any sort. 

3· "\1\Te may consider ourselves lucky when, trying to 
solve a problem, we succeed in discovering a simpler 
analogous problem. In section 15, our original problem 
was concerned with the diagonal of a rectangular paral­
lelepiped; the consideration of a simpler analogous prob­
lem, concerned with the diagonal of a rectangle, led us to 
the solution of the original problem. We are going to 
discuss one more case of the same sort. We have to solve 
the following problem: 

Find the center of gravity of a homogeneous tetra­
hedron. 

Without knowledge of the integral calculus, and with 
little knowledge of physics, this problem is not easy at 
all; it was a serious scientific problem in the days of 
Archimedes or Galileo. Thus, if we wish to solve it with 
as little preliminary knowledge as possible, we should 
look around for a simpler analogous problem. The corre­
sponding problem in the plane occurs here naturally: 

Find the center of gravity of a homogeneous triangle. 
Now. we have two questions instead of one. But two 

questions may be easier to answer than just one question 
-provided that the two questions are intelligently con­
nected. 

4· Laying aside, for the moment, our original problem 
concerning the tetrahedron, we concentrate upon the 
simpler analogous problem concerning the triangle. To 
solve this problem, we have to know something about 
centers of gravity. The following principle is plausible 
and presents itself naturally. 

If a system of masses S consists of parts, each of which 
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has its center of gravity in the same plane) then this plane 
contains also the center of gravity of the whole system S. 

This principle yields all that we need in the case of the 
triangle. First, it implies that the center of gravity of the 
triangle lies in the plane of the triangle. Then, we may 
consider the triangle as consisting of fibers (thin strips, 
"infinitely narrow'' parallelograms) parallel to a certain 
side of the triangle (the side AB in Fig. 7). The center 
of gravity of each fiber (of any parallelogram) is, obvi­
ously, its midpoint, and all these midpoints lie on the 
line joining the vertex C opposite to the side AB to the 
midpoint M of AB (see Fig. 7). 

c 

A M B 
FIG. 7 

Any plane passing through the median CM of the tri­
angle contains the centers of gravity of all parallel fibers 
which constitute the triangle. Thus, we are led to the 
conclusion that the center of gravity of the whole tri­
angle lies on the same median. Yet it must lie on the 
other two medians just as well, it must be the common 
point of intersection of all three medians. 

It is desirable to verify now by pure geometry, inde­
pendently of any mechanical assumption, that the three 
medians meet in the same point. 
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5· After the case of the triangle, the case of the tetra­
hedron is fairly easy. We have now solved a problem 
analogous to our proposed problem and, having solved 
it, we have a model to follow. 

In solving the analogous problem which we use now as 
a model, we conceived the triangle ABC as consisting of 
fibers parallel to one of its sides, AB. Now, we conceive 
the tetrahedron ABCD as consisting of fibers parallel to 
one of its edges, AB. 

The midpoints of the fibers which constitute the tri­
angle lie all on the same straight line, a median of the 
triangle, joining the midpoint M of the side AB to the 
opposite vertex C. The midpoints of the fibers which con­
stitute the tetrahedron lie all in the same plane, joining 
the midpoint M of the edge AB to the opposite edge CD 
(see Fig. 8); we may call this plane MCD a median plane 
of the tetrahedron. 

D 

A M B 
FIG. 8 

In the case of the triangle, we had three medians like 
MC, each of which has to contain the center of gravity 
of the triangle. Therefore, these three medians must meet 
in one point which is precisely the center of gravity. In 
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the case of the tetrahedron we have six median planes 
like MCD, joining the midpoint of some edge to the op­
posite edge, each of which has to contain the center of 
gravity of the tetrahedron. Therefore, these six median 
planes must meet in one point which is precisely the 
center of gravity. 

6. Thus, we have solved the problem of the center of 
gravity of the homogeneous tetrahedron. To complete 
our solution, it is desirable to verify now by pure geome­
try, independently of mechanical considerations, that the 
six median planes mentioned pass through the same 
point. 

When we had solved the problem of the center of grav­
ity of the homogeneous triangle, we found it desirable 
to verify, in order to complete our solution, that the three 
medians of the triangle pass through the same point. 
This problem is analogous to the foregoing but visibly 
simpler. 

Again we may use, in solving the problem concerning 
the tetrahedron, the simpler analogous problem concern­
ing the triangle (which we may suppose here as solved) . 
In fact, consider the three median planes, passing 
through the three edges DA, DB, DC issued from the 
vertex D; each passes also through the midpoint of the 
opposite edge (the median plane through DC passes 
through M , see Fig. 8). Now, these three median planes 
intersect the plane of b. ABC in the three medians of this 
triangle. These three medians pass through the same 
point (this is the result of the simpler analogous prob­
lem) and this point, just as D, is a common point of the 
three median planes. The straight line, joining the two 
common points, is common to all three median planes. 

We proved that those 3 among the 6 median planes 
which pass through the vertex D have a common straight 
line. The same must be true of those 3 median planes 



42 Analogy 

which pass through A; and also of the 3 median planes 
through B; and also of the 3 through C. Connecting 
these facts suitably, we may prove that the 6 median 
planes have a common point. (The 3 median planes 
passing through the sides of !:, ABC determine a com­
mon point, and 3 lines of intersection which meet in the 
common point. Now, by what we have just proved, 
through each line of intersection one more median plane 
must pass.) 

7. Both under 5 and under 6 we used a simpler analo­
gous problem, concerning the triangle, to solve a prob­
lem about the tetrahedron. Yet the two cases are different 
in an important respect. Under 5, we used the method of 
the simpler analogous problem whose solution we imi­
tated point by point. Under 6, we used the result of the 
simpler analogous problem, and we did not care how 
this result had been obtained. Sometimes, we may be 
able to use both the method and the result of the simpler 
analogous problem. Even our foregoing example shows 
this if we regard the considerations under 5 and 6 as 
different parts of the solution of the same problem. 

Our example is typical. In solving a proposed problem, 
we can often use the solution of a simpler analogous 
problem; we may be able to use its method, or its result, 
or both. Of course, in more difficult cases, complications 
may arise which are not yet shown by our example. 
Especially, it can happen that the solution of the analo­
gous problem cannot be immediately used for our orig­
inal problem. Then, it may be worth while to reconsider 
the solution, to vary and to modify it till, after having 
tried various forms of the solution, we find eventually 
one that can be extended to our original problem. 

8. It is desirable to foresee the result, or, at least, some 
features of the result, with some degree of plausibility. 
Such plausible forecasts are often based on analogy. 
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Thus, we may know that the center of gravity of a 
homogeneous triangle coincides with the center of gravity 
of its three vertices (that is, of three material points with 
equal masses, placed in the vertices of the triangle) . 
Knowing this, we may conjecture that the center of 
gravity of a homogeneous tetrahedron coincides with the 
center of gravity of its four vertices. 

This conjecture is an "inference by analogy." Knowing 
that the triangle and the tetrahedron are alike in many 
respects, we conjecture that they are alike in one more 
respect. It would be foolish to regard the plausibility of 
such conjectures as certainty, but it would be just as 
foolish, or even more foolish, to disregard such plausible 
conjectures. 

Inference by analogy appears to be the most common 
kind of conclusion, and it is possibly the most essential 
kind. It yields more or less plausible conjectures which 
may or may not be confirmed by experience and stricter 
reasoning. The chemist, experimenting on animals in 
order to foresee the influence of his drugs on humans, 
draws conclusions by analogy. But so did a small boy I 
knew. His pet dog had to be taken to the veterinary, and 
he inquired: 

"Who is the veterinary?" 
"The animal doctor." 
"Which animal is the animal doctor?" 
g. An analogical conclusion from many parallel cases 

is stronger than one from fewer cases. Yet quality is still 
more important here than quantity. Clear-cut analogies 
weigh more heavily than vague similarities, systematically 
arranged instances count for more than random collec­
tions of cases. 

In the foregoing (under 8) we put forward a con jec­
ture about the center of gravity of the tetrahedron. This 
conjecture was supported by analogy; the case of the 



44 Analogy 

tetrahedron is analogous to that of the triangle. We may 
strengthen the conjecture by examining one more analo­
gous case, the case of a homogeneous rod (that is, a 
straight line-segment of uniform density). 

The analogy between 

segment triangle tetrahedron 

has many aspects. A segment is contained in a straight 
line, a triangle in a plane, a tetrahedron in space. Straight 
line-segments are the simplest one-dimensional bounded 
figures, triangles the simplest polygons, tetrahedrons the 
simplest polyhedrons. 

The segment has 2 zero-dimensional bounding ele­
ments (2 end-points) and its interior is one-dimensional. 

The triangle has 3 zero-dimensional and 3 one-dimen­
sional bounding elements (3 vertices, 3 sides) and its 
interior is two-dimensional. 

The tetrahedron has 4 zero-dimensional, 6 one-dimen­
sional, and 4 two-dimensional bounding elements (4 
vertices, 6 edges, 4 faces), and its interior is three-dimen­
sional. 

These numbers can be assembled into a table. The suc­
cessive columns contain the numbers for the zero-, one-, 
two-, and three-dimensional elements, the successive rows 
the numbers for the segment, triangle, and tetrahedron: 

2 1 

3 3 1 

4 6 4 1 

Very little familiarity with the powers of a binomial is 
needed to recognize in these numbers a section of Pascal's 
triangle. We found a remarkable regularity in segment, 
triangle, and tetrahedron. 

10. If we have experienced that the objects we com­
pare are closely connected, "inferences by analogy," as 
the following, may have a certain weight with us. 
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The center of gravity of a homogeneous rod coincides 
with the center of gravity of its 2 end-points. The center 
of gravity of a homogeneous triangle coincides with the 
center of gravity of its 3 vertices. Should we not suspect 
that the center of gravity of a homogeneous tetrahedron 
coincides with the center of gravity of its 4 vertices? 

Again, the center of gravity of a homogeneous rod 
divides the distance between its end-points in the propor­
tion I : I. The center of gravity of a triangle divides the 
distance between any vertex and the midpoint of the 
opposite side in the proportion 2 : 1. Should we not sus­
pect that the center of gravity of a homogeneous tetra­
hedron divides the distance between any vertex and the 
center of gravity of the opposite face in the proportion 
3: 1? 

It appears extremely unlikely that the conjectures sug­
gested by these questions should be wrong, that such a 
beautiful regularity should be spoiled. The feeling that 
harmonious simple order cannot be deceitful guides the 
discoverer both in the mathematical and in the other 
sciences, and is expressed by the Latin saying: simplex 
sigillum veri (simplicity is the seal of truth) . 

[The preceding suggests an extension ton dimensions. 
It appears unlikely that what is true in the first three 
dimensions, for n = 1, 2, 3, should cease to be true for 
higher values of n. This conjecture is an "inference by 
induction"; it illustrates that induction is naturally based 
on analogy. See INDUCTION AND MATHEMATICAL INDUC• 

TION.] 

[11. We finish the present section by considering briefly 
the most important cases in which analogy attains the 
precision of mathematical ideas. 

(I) Two systems of mathematical objects, sayS and S', 
are so connected that certain relations between the ob­
jects of S are governed by the same laws as those between 
the objects of S'. 
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This kind of analogy between S and S' is exemplified 
by what we have discussed under I; take as S the sides of 
a rectangle, asS' the faces of a rectangular parallelepiped. 

(II) There is a one-one correspondence between the 
objects of the two systems S and S', preserving certain 
relations. That is, if such a relation holds between the 
objects of one system, the same relation holds between 
the corresponding objects of the other system. Such a 
connection between two systems is a very precise sort of 
analogy; it is called isomorphism (or holohedral iso­
morphism). 

(III) There is a one-many correspondence between 
the objects of the two systems S and S' preserving certain 
relations. Such a connection (which is important in vari­
ous branches of advanced mathematical study, especially 
in the Theory of Groups, and need not be discussed here 
in detail) is called merohedral isomorphism (or homo­
morphism; homoiomorphism would be, perhaps, a better 
term). Merohedral isomorphism may be considered as 
another very precise sort of analogy.] 

Auxiliary elements. There is much more in our con­
ception of the problem at the end of our work than was 
in it as We started working (PROGRESS AND ACHIEVEMENT, 

1) . As our work progresses, we add new elements to those 
originally considered. An element that we introduce in 
the hope that it will further the solution is called an 
auxiliary element. 

1. There are various kinds of auxiliary elements. Solv­
ing a geometric problem, we may introduce new lines 
into our figure, auxiliary lines. Solving an algebraic prob­
lem, we may introduce an auxiliary unknown (AUXILIARY 

PROBLEMS, I) • An auxiliary theorem is a theorem whose 
proof we undertake in the hope of promoting the solution 
of our original problem. 
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2. There are various reasons for introducing auxiliary 

elements. We are glad when we have succeeded in recol­
lecting a problem related to ours and solved before. It is 
probable that we can use such a problem but we do not 
know yet how to use it. For instance, the problem which 
we are trying to solve is a geometric problem, and the 
related problem which we have solved before and have 
now succeeded in recollecting is a problem about tri­
angles. Yet there is no triangle in our figure; in order to 
make any use of the problem recollected we must have a 
triangle; therefore, we have to introduce one, by adding 
suitable auxiliary lines to our figure. In general, having 
recollected a formerly solved related problem and wish­
ing to use it for our present one, we must often ask: 
Should we introduce some auxiliary element in order to 
make its use possible? (The example in section 10 is 
typical.) 

Going back to definitions, we have another opportu­
nity to introduce auxiliary elements. For instance, expli­
cating the definition of a circle we should not only 
mention its center and its radius, but we should also 
introduce these geometric elements into our figure. With­
out introducing them, we could not make any concrete 
use of the definition; stating the definition without 
drawing something is mere lip-service. 

Trying to use known results and going back to defini­
tions are among the best reasons for introducing auxil­
iary elements; but they are not the only ones. We may 
add auxiliary elements to the conception of our problem 
in order to make it fuller, more suggestive, more familiar 
although we scarcely know yet explicitly how we shall 
be able to use the elements added. We may just feel that 
it is a "bright idea" to conceive the problem that way 
with such and such elements added. 

We may have this or that reason for introducing an 
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auxiliary element, but we should have some reason. We 
should not introduce auxiliary elements wantonly. 

3· Example. Construct a triangle, being given one 
angle, the altitude drawn from the vertex of the given 
angle, and the perimeter of the triangle. 

A 

A 

p 

FIG. 10 

We introduce suitable notation. Let a denote the given 
angle, h the given altitude drawn from the vertex A of a 

and p the given perimeter. We draw a figure in which 
we easily place a and h. Have we used all the data? No, 
our figure does not contain the given length p, equal to 
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the perimeter of the triangle. Therefore we must intro­
duce p. But how? 

We may attempt to introduce p in various ways. The 
attempts exhibited in Figs. 9, 10 appear clumsy. If we try 
to make clear to ourselves why they appear so unsatis­
factory, we may perceive that it is for lack of symmetry. 

In fact, the triangle has three unknown sides a> b, c. 
We call a, as usual, the side opposite to A; we know that 

a+ b + c = p. 
Now, the sides band c play the same role; they are inter­
changeable; our problem is symmetric with respect to b 
and c. But b and c do not play the same role in our 
figures g, 10; placing the length p we treated b and c 
differently; the figures 9 and 10 spoil the natural sym­
metry of the problem with respect to band c. We should 
place p so that it has the same relation to b as to c. 

This consideration may be helpful in suggesting to 
place the length p as in Fig. 11. We add to the side a of 

A 

E c a B c D 
FIG. II 

the triangle the segment CE of length b on one side and 
the segment BD of the length c on the other side so that 
p appears in Fig. II as the line ED of length 

b +a+ c = p. 
If we have some little experience in solving problems of 
construction, we shall not fail to introduce into the 
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figure, along with ED, the auxiliary lines AD and AE, 
each of which is the base of an isosceles triangle. In fact, 
it is not unreasonable to introduce elements into the 
problem which are particularly simple and familiar, as 
isosceles triangle. 

We have been quite lucky in introducing our auxiliary 
lines. Examining the new figure we may discover that 
LEAD has a simple relation to the given angle a. In fact, 
we find using the isosceles triangles t:,. ABD and t:,. ACE 

that LDAE = ~+ go0 • After this remark, it is natural to 
2 

try the construction of ~ DAE. Trying this construction, 
we introduce an auxiliary problem which is much easier 
than the original problem. 

4· Teachers and authors of textbooks should not forget 
that the intelligent student and THE INTELLIGENT READER 

are not satisfied by verifying that the steps of a reasoning 
are correct but also want to know the motive and the 
purpose of the various steps. The introduction of an 
auxiliary element is a conspicuous step. If a tricky 
auxiliary line appears abruptly in the figure, without any 
motivation, and solves the problem surprisingly, intelli­
gent students and readers are disappointed; they feel that 
they are cheated. Mathematics is interesting in so far as 
it occupies our reasoning and inventive powers. But there 
is nothing to learn about reasoning and invention if the 
motive and purpose of the most conspicuous step remain 
incomprehensible. To make such steps comprehensible 
by suitable remarks (as in the foregoing, under 3) or by 
carefully chosen questions and suggestions (as in sections 
10, 18, 19, 20) takes a lot of time and effort; but it may 
be worth while. 

Auxiliary problem is a problem which we consider, 
not for its own sake, but because we hope that its con-
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sideration may help us to solve another problem, our 
original problem. The original problem is the end we 
wish to attain, the auxiliary problem a means by which 
we try to attain our end. 

An insect tries to escape through the windowpane, 
tries the same again and again, and does not try the next 
window which is open and through which it came into 
the room. A man is able, or at least should be able, to act 
more intelligently. Human superiority consists in going 
around an obstacle that cannot be overcome directly, in 
devising a suitable auxiliary problem when the original 
problem appears insoluble. To devise an auxiliary prob­
lem is an important operation of the mind. To raise a 
clear-cut new problem subservient to another problem, 
to conceive distinctly as an end what is means to another 
end, is a refined achievement of the intelligence. It is an 
important task to learn (or to teach) how to handle 
auxiliary problems intelligently. 

1. Example. Find x, satisfying the equation 

x4 - 13x2 + 36 = o. 

If we observe that x4 = (x2)2 we may see the advan­
tage of introducing 

y = x2. 

We obtain now a new problem: Find y, satisfying the 
equation 

y2- I3Y + 36 = o. 

The new problem is an auxiliary problem; we intend to 
use it as a means of solving our original problem. The 
unknown of our auxiliary problem, y, is appropriately 
called auxiliary unknown. 

2. Example. Find the diagonal of a rectangular paral­
lelepiped being given the lengths of three edges drawn 
from the same corner. 
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Trying to solve this problem (section 8) we may be 
led, by analogy (section 15), to another problem: 
Find the diagonal of a rectangular parallelogram being 
given the lengths of two sides drawn from the same 
vertex. 

The new problem is an auxiliary problem; we consider 
it because we hope to derive some profit for the original 
problem from its consideration. 

3· Profit. The profit that we derive from the consider­
ation of an auxiliary problem may be of various kinds. 
We may use the result of the auxiliary problem. Thus, in 
example 1, having found by solving the quadratic equa­
tion for y that y is equal to 4 or to g, we infer that 
x2 = 4 or x2 = g and derive hence all possible values of 
x. In other cases, we may use the method of the auxiliary 
problem. Thus, in example 2, the auxiliary problem is a 
problem of plane geometry; it is analogous to, but sim­
pler than, the original problem which is a problem of 
solid geometry. It is reasonable to introduce an auxiliary 
problem of this kind in the hope that it will be instruc­
tive, that it will give us opportunity to familiarize our­
selves with certain methods, operations, or tools, which 
we may use afterwards for our original problem. In ex­
ample 2, the choice of the auxiliary problem is rather 
lucky; examining it closely we find that we can use both 
its method and its result. (See section 15, and DID YOU 

USE ALL THE DATA?) 

4· Risk. We take away from the original problem the 
time and the effort that we devote to the auxiliary prob­
lem. If our investigation of the auxiliary problem fails, 
the time and effort we devoted to it may be lost. There­
fore, we should exercise our judgment in choosing an 
auxiliary problem. We may have various good reasons 
for our choice. The auxiliary problem may appear more 
accessible than the original problem; or it may appear 
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instructive; or it may have some sort of aesthetic appeal. 
Sometimes the only advantage of the auxiliary problem 
is that it is new and offers unexplored possibilities; we 
choose it because we are tired of the original problem 
all approaches to which seem to be exhausted. 

5· How to find one. The discovery of the solution of 
the proposed problem often depends on the discovery of 
a suitable auxiliary problem. Unhappily, there is no in­
fallible method of discovering suitable auxiliary prob­
lems as there is no infallible method of discovering the 
solution. There are, however, questions and suggestions 
which are frequently helpful, as LOOK AT THE UNKNOWN. 

We are often led to useful auxiliary problems by VARI­

ATION OF THE PROBLEM. 

6. Equivalent problems. Two problems are equivalent 
if the solution of each involves the solution of the other. 
Thus, in our example 1, the original problem and the 
auxiliary problem are equivalent. 

Consider the following theorems: 
A. In any equilateral triangle, each angle is equal 

to 6o 0 • 

B. In any equiangular triangle, each angle is equal 
to 6o 0 • 

These two theorems are not identical. They contain 
different notions; one is concerned with equality of the 
sides, the other with equality of the angles of a triangle. 
But each theorem follows from the other. Therefore, the 
problem to prove A is equivalent to the problem to 
prove B. 

If we are required to prove A, there is a certain advan­
tage in introducing, as an auxiliary problem, the prob­
lem to prove B. The theorem B is a little easier to prove 
than A and, what is more important, we may foresee 
that B is easier than A, we may judge so, we may find 
plausible from the outset that B is easier than A. In fact, 
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the theorem B, concerned only with angles, is more 
"homogeneous" than the theorem A which is concerned 
with both angles and sides. 

The passage from the original problem to the aux­
iliary problem is called convertible reduction, or bi­
lateral reduction, or equivalent reduction if these two 
problems, the original and the auxiliary, are equivalent. 
Thus, the reduction of A to B (see above) is convertible 
and so is the reduction in example 1. Convertible reduc­
tions are, in a certain respect, more important and more 
desirable than other ways to introduce auxiliary prob­
lems, but auxiliary problems which are not equivalent 
to the original problem may also be very useful; take 
example 2. 

7· Chains of equivalent auxiliary problems are fre­
quent in mathematical reasoning. We are required to 
solve a problem A; we cannot see the solution, but we 
may find that A is equivalent to another problem B. 
Considering B we may run into a third problem C equiv­
alent to B. Proceeding in the same way, we reduce C to 
D, and so on, until we come upon a last problem L whose 
solution is known or immediate. Each problem being 
equivalent to the preceding, the last problem L must be 
equivalent to our original problem A. Thus we are able 
to infer the solution of the original problem A from the 
problem L which we attained as the last link in a chain 
of auxiliary problems. 

Chains of problems of this kind were noticed by the 
Greek mathematicians as we may see from an important 
passage of PAPPUS. For an illustration, let us reconsider 
our example 1. Let us call (A) the condition imposed 
upon the unknown x: 

(A) 

One way of solving the problem is to transform the pro-
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posed condition into another condition which we shall 
call (B) : 

(B) 

Observe that the conditions (A) and (B) are different. 
They are only slightly different if you wish to say so, 
they are certainly equivalent as you may easily convince 
yourself, but they are definitely not identical. The pas­
sage from (A) to (B) is not only correct but has a clear­
cut purpose, obvious to anybody who is familiar with the 
solution of quadratic equations. Working further in the 
same direction we transform the condition (B) into still 
another condition (C) : 

(C) 

Proceeding in the same way, we obtain 

(D) (2x 2 - 13)2 = 25 

(E) 2x2- 13 = ±s 

(F) 
13 ± 5 

x2 = 
2 

(G) x=±~I3:5 

(H) x = 3, or -3, or 2, or -2. 

Each reduction that we made was convertible. Thus, the 
last condition (H) is equivalent to the first condition 
(A) so that 3, -3, 2, -2 are all possible solutions of our 

original equation. 
In the foregoing; we derived from an original condi­

tion (A) a sequence of conditions (B), (C), (D), ... 
each of which was equivalent to the foregoing. This 
point deserves the greatest care. Equivalent conditions 
are satisfied by the same objects. Therefore, if we pass 
from a proposed condition to a new condition equivalent 
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to it, we have the same solutions. But if we pass from a 
proposed condition to a narrower one, we lose solutions, 
and if we pass to a wider one we admit improper, adven­
titious solutions which have nothing to do with the pro­
posed problem. If, in a series of successive reductions, we 
pass to a narrower and then again to a wider condition 
we may lose track of the original problem completely. In 
order to avoid this danger, we must check carefully the 
nature of each newly introduced condition: Is it equiv­
alent to the original condition? This question is still 
more important when we do not deal with a single equa­
tion as here but with a system of equations, or when the 
condition is not expressed by equations as, for instance, 
in problems of geometric construction. 

(Compare PAPPus, especially comments 2, 3, 4, .8. The 
description on p. 143, lines 4-21, is unnecessarily re­
stricted; it describes a chain of "problems to find," each 
of which has a different unknown. The example con­
sidered here has just the opposite speciality: all problems 
of the chain have the same unknown and differ only in 
the form of the condition. Of course, no such restriction 
is necessary.) 

8. Unilateral reduction. We have two problems, A and 
B, both unsolved. If we could solve A we could hence 
derive the full solution of B. But not conversely; if we 
could solve B, we would obtain, possibly, some informa­
tion about A, but we would not know how to derive the 
full solution of A from that of B. In such a case, more is 
achieved by the solution of A than by the solution of B. 
Let us call A the more ambitious, and B the less ambi­
tious of the two problems. 

If, from a proposed problem, we pass either to a more 
ambitious or to a less ambitious auxiliary problem we 
call the step a unilateral reduction. There are two kinds 
of unilateral reduction, and both are, in some way or 
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other, more risky than a bilateral or convertible re­
duction. 

Our example 2 shows a unilateral reduction to a less 
ambitious problem. In fact, if we could solve the original 
problem, concerned with a parallelepiped whose length, 
width, and height are a, b, c respectively, we could move 
on to the auxiliary problem putting c = o and obtaining 
a parallelogram with length a and width b. For another 
example of a unilateral reduction to a less ambitious 
problem see SPECIALIZATION, 3, 4, 5· These examples show 
that, with some luck, we may be able to use a less am­
bitious auxiliary problem as a stepping stone, combining 
the solution of the auxiliary problem with some appro­
priate supplementary remark to obtain the solution of 
the original problem. 

Unilateral reduction to a more ambitious problem may 
also be successful. (See GENERALIZATION, 2, and the reduc­
tion of the first to the second problem considered in 
INDUCTION AND MATHEMATICAL INDUCTION, I, 2.) In fact, 
the more ambitious problem may be more accessible; this 
is the INVENTOR'S PARADOX. 

Bolzano, Bernard (1781-1848), logician and mathema­
tician, devoted an extensive part of his comprehensive 
presentation of logic, Wissenschaftslehre, to the subject 
of heuristic (vol. 3, pp. 293-575). He writes about this 
part of his work: "I do not think at all that I am able 
to present here any procedure of investigation that was 
not perceived long ago by all men of talent; and I do not 
promise at all that you can find here anything quite new 
of this kind. But I shall take pains to state in clear words 
the rules and ways of investigation which are followed 
by all able men, who in most cases are not even conscious 
of following them. Although I am free from the illusion 
that I shall fully succeed even in doing this, I still hope 
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that the little that is presented here may please some 
people and have some application afterwards." 

Bright idea, or "good idea," or "seeing the light," is a 
colloquial expression describing a sudden advance toward 
the solution; see PROGRESS AND ACHIEVEMENT, 6. The com­
ing of a bright idea is an experience familiar to every­
body but difficult to describe and so it may be interesting 
to notice that a very suggestive description of it has been 
incidentally given by an authority as old as Aristotle. 

Most people will agree that conceiving a bright idea is 
an "act of sagacity." Aristotle defines "sagacity" as fol­
lows: "Sagacity is a hitting by guess upon the essential 
connection in an inappreciable time. As for example, if 
you see a person talking with a rich man in a certain 
way, you may instantly guess that that person is trying to 
borrow money. Or observing that the bright side of the 
moon is always toward the sun, you may suddenly per­
ceive why this is; namely, because the moon shines by the 
light of the sun." 1 

The first example is not bad but rather trivial; not 
much sagacity is needed to guess things of this sort about 
rich men and money, and the idea is not very bright. 
The second example, however, is quite impressive if we 
make a little effort of imagination to see it in its proper 
setting. 

We should realize that a contemporary of Aristotle had 
to watch the sun and the stars if he wished to know the 
time since there were no wristwatches, and had to ob­
serve the phases of the moon if he planned traveling by 
night since there were no street lights. He was much 
better acquainted with the sky than the modern city-

1 The text is slightly rearranged. For a more exact translation see 
William Whewell, The Philosophy of the Inductive Sciences (1847), 
vol. n, p. 131. 



Can You Check the Result? 59 

dweller, and his natural intelligence was not dimmed by 
undigested fragments of journalistic presentations of 
astronomical theories. He saw the full moon as a flat disc, 
similar to the disc of the sun but much less bright. He 
must have wondered at the incessant changes in the shape 
and position of the moon. He observed the moon occa­
sionally also at daytime, about sunrise or sunset, and 
found out "that the bright side of the moon is always 
toward the sun" which was in itself a respectable achieve­
ment. And now he perceives that the varying aspects of 
the moon are like the various aspects of a ball which is 
illuminated from one side so that one half of it is shiny 
and the other half dark. He conceives the sun and the 
moon not as flat discs but as round bodies, one giving 
and the other receiving the light. He understands the 
essential connection, he rearranges his former concep­
tions instantly, "in an inappreciable time": there is a 
sudden leap of the imagination, a bright idea, a flash of 
genius. 

Can you check the result? Can you check the argu­
ment? A good answer to these questions strengthens our 
trust in the solution and contributes to the solidity of our 
knowledge. 

1. Numerical results of mathematical problems can be 
tested by comparing them to observed numbers, or to a 
commonsense estimate of observable numbers. As prob­
lems arising from practical needs or natural curiosity 
almost always aim at facts it could be expected that such 
comparisons with observable facts are seldom omitted. 
Yet every teacher knows that students achieve incredible 
things in this respect. Some students are not disturbed 
at all when they find 16,130 ft. for the length of the boat 
and 8 years, 2 months for the age of the captain who is, 
by the way, known to be a grandfather. Such neglect of 
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the obvious does not show necessarily stupidity but rather 
indifference toward artificial problems. 

2. Problems "in letters" are susceptible of more, and 
more interesting, tests than "problems in numbers" (sec­
tion 14). For another example, let us consider the 
frustum of a pyramid with square base. If the side of 
the lower base is a, the side of the upper base b, and 
the altitude of the frustum h, we find for the volume 

a2 + ab + b2 
-----h. 

3 

We may test this result by SPECIALIZATION. In fact, if 
b =a the frustum becomes a prism and the formula 
yields a2h; and if b = o the frustum becomes a pyramid 

a2h 
and the formula yields-. We may apply the TEST BY 

3 
DIMENSION. In fact, the expression has as dimension the 
cube of a length. Again, we may test the formula by 
variation of the data. In fact, if any one of the positive 
quantities a, b or h increases the value of the expression 
increases. 

Tests of this sort can be applied not only to the final 
result but also to intermediate results. They are so useful 
that it is worth while preparing for them; see VARIATION 

OF THE PROBLEM, 4· In order to be able to use such tests, 
we may find advantage in generalizing a "problem in 
numbers" and changing it into a "problem in letters"; 
see GENERALIZATION, 3· 

3· Can you check the argument? Checking the argu­
ment step by step, we should avoid mere repetition. First, 
mere repetition is apt to become boring, uninstructive, a 
strain on the attention. Second, where we stumbled once, 
there we are likely to stumble again if the circumstances 
are the same as before. If we feel that it is necessary to go 
again through the whole argument step by step, we should 
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at least change the order of the steps, or their grouping, 
to introduce some variation. 

4· It requires less exertion and is more interesting to 
pick out the weakest point of the argument and examine 
it first. A question very useful in picking out points of 
the argument that are worth while examining is: DID YOU 

USE ALL THE DATA? 

5· It is clear that our nonmathematical knowledge can­
not be based entirely on formal proofs. The more solid 
part of our everyday knowledge is continually tested and 
strengthened by our everyday experience. Tests by ob­
servation are more systematically conducted in the nat­
ural sciences. Such tests take the form of careful 
experiments and measurements, and are combined with 
mathematical reasoning in the physical sciences. Can our 
knowledge in mathematics be based on formal proofs 
alone? 

This is a philosophical question which we cannot de­
bate here. It is certain that your knowledge, or my knowl­
edge, or your students' knowledge in mathematics is not 
based on formal proofs alone. If there is any solid knowl­
edge at all, it has a broad experimental basis, and this 
basis is broadened by each problem whose result is 
successfully tested. 

Can you derive the result differently? When the solu­
tion that we have finally obtained is long and involved, 
we naturally suspect that there is some clearer and less 
roundabout solution: Can you derive the result differ­
ently? Can you see it at a glance? Yet even if we have 
succeeded in finding a satisfactory solution we may still be 
interested in finding another solution. We desire to con­
vince ourselves of the validity of a theoretical result by 
two different derivations as we desire to perceive a mate­
rial object through two different senses. Having found a 
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proof, we wish to find another proof as we wish to touch 
an object after having seen it. 

Two proofs are better than one. "It is safe riding at 
two anchors." 

1. Example. Find the area S of the lateral surface of 
the frustum of a right circular cone, being given the 
radius of the lower baseR, the radius of the upper baser, 
and the altitude h. 

This problem can be solved by various procedures. For 
instance, we may know the formula for the lateral surface 
of a full cone. As the frustum is generated by cutting off 
from a cone a smaller cone, so its lateral surface is the 
difference of two full conical surfaces; it remains to ex­
press these in terms of R, r, h. Carrying through this idea, 
we obtain finally the formula 

S = 1r( R + r) V ( R - r )2 + h2• 

Having found this result in some way or other, after 
longer calculation, we may desire a clearer and less 
roundabout argument. Can you derive the result differ­
ently? Can you see it at a glance? 

Desiring to see intuitively the whole result, we may 
begin with trying to see the geometric meaning of its 
parts. Thus, we may observe that 

V(R- r) 2 + h2 

is the length of the slant height. (The slant height is one 
of the nonparallel sides of the isosceles trapezoid that, 
revolving about the line joining the midpoints of its 
parallel sides, generates the frustum; see Fig. 12.) Again, 
we may discover that 

1r(R + r) 

is the arithmetic mean of the perimeters of the two bases 
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of the frustum. Looking at the same part of the formula, 
we may be moved to write it also in the form 

1r(R + r) = 21r R + r 
2 

that is the perimeter of the mid-section of the frustum. 
(We call here mid-section the intersection of the frustum 
with a plane which is parallel both to the lower base and 
to the upper base of the frustum and bisects the altitude.) 

FIG. 12 

Having found new interpretations of various parts, we 
may see now the whole formula in a different light. We 
may read it thus: 

Area = Perimeter of mid-section X Slant height. 

We may recall here the rule for the trapezoid: 

Area= Middle-line X Altitude. 

(The middle-line is parallel to the two parallel sides of 
the trapezoid and bisects the altitude.) Seeing intuitively 
the analogy of both statements, that about the frustum 
and that about the trapezoid, we see the whole result 
about the frustum "almost at a glance." That is, we feel 
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that we are very near now to a short and direct proof of 
the result found by a long calculation. 

2. The foregoing example is typical. Not entirely satis­
fied with our derivation of the result, we wish to improve 
it, to change it. Therefore, we study the result, trying to 
understand it better, to see some new aspect of it. We 
may succeed first in observing a new interpretation of a 
certain small part of the result. Then, we may be lucky 
enough to discover some new mode of conceiving some 
other part. 

Examining the various parts, one after the other, and 
trying various ways of considering them, we may be led 
finally to see the whole result in a different light, and our 
new conception of the result may suggest a new proof. 

It may be confessed that all this is more likely to hap­
pen to an experienced mathematician dealing with some 
advanced problem than to a beginner struggling with 
some elementary problem. The mathematician who has a 
great deal of knowledge is more exposed than the begin­
ner to the danger of mobilizing too much knowledge and 
framing an unnecessarily involved argument. But, as a 
compensation, the experienced mathematician is in a 
better position than the beginner to appreciate the rein­
terpretation of a small part of the result and to proceed, 
accumulating such small advantages, to recasting ulti­
mately the whole result. 

Nevertheless, it can happen even in very elementary 
classes that the students present an unnecessarily com­
plicated solution. Then, the teacher should show them, 
at least once or twice, not only how to solve the problem 
more shortly but also how to find, in the result itself, 
indications of a shorter solution. 

See also REDUCTIO AD ABSURDUM AND INDIRECT PROOF. 

Can you use the result? To find the solution of a prob­
lem by our own means is a discovery. If the problem is 
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not difficult, the discovery is not so momentous, but it is 
a discovery nevertheless. Having made some discovery, 
however modest, we should not fail to inquire whether 
there is something more behind it, we should not miss the 
possibilities opened up by the new result, we should try 
to use again the procedure used. Exploit your success! 
Can you use the result, or the method, for some other 
problem? 

1. We can easily imagine new problems if we are some­
what familiar with the principal means of varying a 
problem, as GENERALIZATION, SPECIALIZATION, ANALOGY, 

DECOMPOSING AND RECOMBINING. We start from a proposed 
problem, we derive from it others by the means we just 
mentioned, from the problems we obtained we derive 
still others, and so on. The process is unlimited in theory 
but, in practice, we seldom carry it very far, because the 
problems that we obtain so are apt to be inaccessible. 

On the other hand we can construct new problems 
which we can easily solve using the solution of a problem 
previously solved; but these easy new problems are apt 
to be uninteresting. 

To find a new problem which is both interesting and 
accessible, is not so easy; we need experience, taste, and 
good luck. Yet we should not fail to look around for 
more good problems when we have succeeded in solving 
one. Good problems and mushrooms of certain kinds 
have something in common; they grow in clusters. Hav­
ing found one, you should look around; there is a good 
chance that there are some more quite near. 

2. We are going to illustrate some of the foregoing 
points by the same example that we discussed in sections 
8, 10, 12, 14, 15. Thus we start from the following 
problem: 

Given the three dimensions (length, breadth, and 
height) of a rectangular parallelepiped, find the diagonal. 

If we know the solution of this problem, we can easily 
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solve any of the following problems (of which the first 
two were almost stated in section 14). 

Given the three dimensions of a rectangular parallele­
piped, find the radius of the circumscribed sphere. 

The base of a pyramid is a rectangle of which the cen­
ter is the foot of the altitude of the pyramid. Given the 
altitude of the pyramid and the sides of its base, find the 
lateral edges. 

Given the rectangular coordinates (x1 , y1 , z1 ), (x 2 , 

y2 , z2 ) of two points in space, find the distance of these 
points. 

We solve these problems easily because they are scarcely 
different from the original problem whose solution we 
know. In each case, we add some new notion to our orig­
inal problem, as circumscribed sphere, pyramid, rectan­
gular coordinates. These notions are easily added and 
easily eliminated, and, having got rid of them, we fall 
back upon our original problem. 

The foregoing problems have a certain interest be­
cause the notions that we introduced into the original 
problem are interesting. The last problem, that about the 
distance of two points given by their coordinates, is even 
an important problem because rectangular coordinates 
are important. 

3· Here is another problem which we can easily solve 
if we know the solution of our original problem: Given 
the length, the breadth, and the diagonal of a rectangu­
lar parallelepiped, find the height. 

In fact, the solution of our original problem consists 
essentially in establishing a relation among four quanti­
ties, the three dimensions of the parallelepiped and its 
diagonal. If any three of these four quantities are given, 
we can calculate the fourth from the relation. Thus, we 
can solve the new problem. 

We have here a pattern to derive easily solvable new 
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problems from a problem we have solved: we regard the 
original unknown as given and one of the original data 
as unknown. The relation connecting the unknown and 
the data is the same in both problems, the old and the 
new. Having found this relation in one, we can use it 
also in the other. 

This pattern of deriving new problems by in terchang­
ing the roles is very different from the pattern followed 
under 2. 

4· Let us now derive some new problems by other 
means. 

A natural generalization of our original problem is the 
following: Find the diagonal of a parallelepiped, being 
given the three edges issued from an end-point of the 
diagonal, and the three angles between these three 
edges. 

By specialization we obtain the following problem: 
Find the diagonal of a cube with given edge. 

We may be led to an inexhaustible variety of problems 
by analogy. Here are a few derived from those considered 
under 2: Find the diagonal of a regular octahedron with 
given edge. Find the radius of the circumscribed sphere 
of a regular tetrahedron with given edge. Given the geo­
graphical coordinates, latitude and longitude, of two 
points on the earth's surface (which we regard as a 
sphere) find their spherical distance. 

All these problems are interesting but only the one 
obtained by specialization can be solved immediately on 
the basis of the solution of the original problem. 

5· We may derive new problems from a proposed one 
by considering certain of its elements as variable. 

A special case of a problem mentioned under 2 is to 
find the radius of a sphere circumscribed about a cube 
whose edge is given. Let us regard the cube, and the com­
mon center of cube and sphere as fixed, but let us vary 
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the radius of the sphere. If this radius is small, the sphere 
is contained in the cube. As the radius increases, the 
sphere expands (as a rubber balloon in the process of 
being inflated). At a certain moment, the sphere touches 
the faces of the cube; a little later, its edges; still later the 
sphere passes through the vertices. Which values does the 
radius assume at these three critical moments? 

6. The mathematical experience of the student is in­
complete if he never had an opportunity to solve a prob­
lem invented by himself. The teacher may show the der­
ivation of new problems from one just solved and, doing 
so, provoke the curiosity of the students. The teacher 
may also leave some part of the invention to the students. 
For instance, he may tell about the expanding sphere we 
just discussed (under 5) and ask: "What would you try 
to calculate? Which value of the radius is particularly 
interesting?" 

Carrying out. To conceive a plan and to carry it 
through are two different things. This is true also of 
mathematical problems in a certain sense; between carry­
ing out the plan of the solution, and conceiving it, there 
are certain differences in the character of the work. 

1. We may use provisional and merely plausible argu­
ments when devising the final and rigorous argument as 
we use scaffolding to support a bridge during construc­
tion. When, however, the work is sufficiently advanced 
we take off the scaffolding, and the bridge should be able 
to stand by itself. In the same way, when the solution is 
sufficiently advanced, we brush aside all kinds of provi­
sional and merely plausible arguments, and the result 
should be supported by rigorous argument alone. 

Devising the plan of the solution, we should not be too 
afraid of merely plausible, heuristic reasoning. Anything 
is right that leads to the right idea. But we have to 
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change this standpoint when we start carrying out the 
plan and then we should accept only conclusive, strict 
arguments. Carrying out your plan of the solution check 
each step. Can you see clearly that the step is correct? 

The more painstakingly we check our steps when carry­
ing out the plan, the more freely we may use heuristic 
reasoning when devising it. 

2. We should give some consideration to the order in 
which we work out the details of our plan, especially if 
our problem is complex. We should not omit any detail, 
we should understand the relation of the detail before 
us to the whole problem, we should not lose sight of the 
connection of the major steps. Therefore, we should 
proceed in proper order. 

In particular, it is not reasonable to check minor de­
tails before we have good reasons to believe that the 
major steps of the argument are sound. If there is a break 
in the main line of the argument, checking this or that 
secondary detail would be useless anyhow. 

The order in which we work out the details of the 
argument may be very different from the order in which 
we invented them; and the order in which we write down 
the details in a definitive exposition may be still different. 
Euclid's Elements present the details of the argument in 
a rigid systematic order which was often imitated and 
often criticized. 

3· In Euclid's exposition all arguments proceed in the 
same direction: from the data toward the unknown in 
"problems to find," and from the hypothesis toward the 
conclusion in "problems to prove." Any new element, 
point, line, etc., has to be correctly derived from the data 
or from elements correctly derived in foregoing steps. 
Any new assertion has to be correctly proved from the 
hypothesis or from assertions correctly proved in fore­
going steps. Each new element, each new assertion is 
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examined when it is encountered first, and so it has to be 
examined just once; we may concentrate all our attention 
upon the present step, we need not look behind us, or 
look ahead. The very last new element whose derivation 
we have to check, is the unknown. The very last assertion 
whose proof we have to examine, is the conclusion. If 
each step is correct, also the last one, the whole argument 
is correct. 

The Euclidean way of exposition can be highly recom­
mended, without reservation, if the purpose is to examine 
the argument in detail. Especially, if it is our own argu­
ment, and it is long and complicated, and we have not 
only found it but have also surveyed it on large lines so 
that nothing is left but to examine each particular point 
in itself, then nothing is better than to write out the 
whole argument in the Euclidean way. 

The Euclidean way of exposition, however, cannot be 
recommended without reservation if the purpose is to 
convey an argument to a reader or to a listener who 
never heard of it before. The Euclidean exposition is ex­
cellent to show each particular point but not so good to 
show the main line of the argument. THE INTELLIGENT 

READER can easily see that each step is correct but has 
great difficulty in perceiving the source, the purpose, the 
connection of the whole argument. The reason for this 
difficulty is that the Euclidean exposition fairly often 
proceeds in an order exactly opposite to the natural 
order of invention. (Euclid's exposition follows rigidly 
the order of "synthesis"; see PAPPUS, especially comments 

3· 4· 5·) 
4· Let us sum up. Euclid's rrianner of exposition, pro-

gressing relentlessly from the data to the unknown and 
from the hypothesis to the conclusion, is perfect for 
checking the argument in detail but far from being per­
fect for making understandable the main line of the 
argument. 
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It is highly desirable that the students should examine 
their own arguments in the Euclidean manner, proceed­
ing from the data to the unknown, and checking each 
step although nothing of this kind should be too rigidly 
enforced. It is not so desirable that the teacher should 
present many proofs in the pure Euclidean manner, al­
though the Euclidean presentation may be very useful 
after a discussion in which, as is recommended by the 
present book, the students guided by the teacher discover 
the main idea of the solution as independently as pos­
sible. Also desirable seems to be the manner adopted by 
some textbooks in which an intuitive sketch of the main 
idea is presented first and the details in the Euclidean 
order of exposition afterwards. 

5· ·wishing to satisfy himself that his propositiOn is 
true, the conscientious mathematician tries to see it in­
tuitively and to give a formal proof. Can you see clearly 
that it is correct? Can you prove that it is correct? The 
conscientious mathematician acts in this respect like the 
lady who is a conscientious shopper. Wishing to satisfy 
herself of the quality of a fabric, she wants to see it and 
to touch it. Intuitive insight and formal proof are two 
different ways of perceiving the truth, comparable to the 
perception of a material object through two different 
senses, sight and touch. 

Intuitive insight may rush far ahead of formal proof. 
Any intelligent student, without any systematic knowl­
edge of solid geometry, can see as soon as he has clearly 
understood the terms that two straight lines parallel to 
the same straight line are parallel to each other (the 
three lines may or may not be in the same plane). Yet 
the proof of this statement, as given in proposition g of 
the 11th book of Euclid's Elements, needs a long, careful, 
and ingenious preparation. 

Formal manipulation of logical rules and algebraic 
formulas may get far ahead of intuition. Almost every-
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body can see at once t:hat 3 straight lines, taken at ran­
dom, divide the plane into 7 parts (look at the only 
finite part, the triangle included by the 3 lines) . Scarcely 
anybody is able to see, even straining his attention to the 
utmost, that 5 planes, taken at random, divide space into 
26 parts. Yet it can be rigidly proved that the right num­
ber is actually 26, and the proof is not even long or 
difficult. 

Carrying out our plan, we check each step. Checking 
our step, we may rely on intuitive insight or on formal 
rules. Sometimes the intuition is ahead, sometimes the 
formal reasoning. It is an interesting and useful exercise 
to do it both ways. Can you see clearly that the step is 
correct? Yes, I can see it clearly and distinctly. Intuition 
is ahead; but could formal reasoning overtake it? Can 
you also PROVE that it is correct? 

Trying to prove formally what is seen intuitively and 
to see intuitively what is proved formally is an invigor­
ating mental exercise. Unfortunately, in the classroom 
there is not always enough time for it. The example, 
discussed in sections 12 and 14, is typical in this respect. 

Condition is a principal part of a "problem to find." 
See PROBLEMS TO FIND, PROBLEMS TO PROVE, 3· See also 
TERMS, NEW AND OLD, 2. 

A condition is called redundant if it contains super­
fluous parts. It is called contradictory if its parts are 
mutually opposed and inconsistent so that there is no 
object satisfying the condition. 

Thus, if a condition is expressed by more linear equa­
tions than there are unknowns, it is either redundant or 
contradictory; if the condition is expressed by fewer 
equations than there are unknowns, it is insufficient to 
determine the unknowns; if the condition is expressed 
by just as many equations as there are unknowns it is 
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usually just sufficient to determine the unknowns but 
may be, in exceptional cases, contradictory or insufficient. 

Contradictory. See coNDITION. 

Corollary is a theorem which we find easily in examin­
ing another theorem just found. The word is of Latin 
origin; a more literal translation would be "gratuity" or 
"tip." 

Could you derive something useful from the data? 
We have before us an unsolved problem, an open ques­
tion. We have to find the connection between the data 
and the unknown. We may represent our unsolved prob­
lem as open space between the data and the unknown, 
as a gap across which we have to construct a bridge. We 
can start constructing our bridge from either side, from 
the unknown or from the data. 

Look at the unknown! And try to think of a familiar 
problem having the same or a similar unknown. This 
suggests starting the work from the unknown. 

Look a t the data! Could you derive something useful 
from the data? This suggests starting the work from the 
data. 

It appears that starting the reasoning from the un­
known is usually preferable (see PAPPUS and woRKING 
BACKWARDS) . Yet the alternative start, from the data, also 
h as chances of success, must often be tried, and deserves 
illustration. 

Example. We are given three points A, B, and C. Draw 
a line through A which passes between B and C and is 
at equal distances from B and C. 

What are the data? Three points, A , B, and C, are 
given in position. We draw a figure, exhibiting the data 
(Fig. 13). 
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What is the unknown? A straight line. 
What is the condition? The required line passes 

through A, and passes between B and C, at the same dis­
tance from each. We assemble the unknown and the data 

B 
• 

e 

c 
FIG. 13 

in a figure exhibiting the required relations (Fig. 14). 
Our figure, suggested by the definition of the distance of 
a point from a straight line, shows the right angles in­
volved by this definition. 

FIG. I4 

The figure, as it is plotted, is still "too empty." The 
unknown straight line is still unsatisfactorily connected 
with the data A, B, and C. The figure needs some aux­
iliary line, some addition-but what? A fairly good stu-
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dent can get stranded here. There are, of course, various 
things to try, but the best question to refloat him is: 
Could you derive something useful from the data? 

In fact, what are the data? The three points exhibited 
in Fig. 13, nothing else. We have not yet used sufficiently 
the points B and C; we have to derive something useful 
from them. But what can you do with just two points? 
Join them by a straight line. So, we draw Fig. 15. 

8 

• 

c 
FIG. 15 

If we superpose Fig. 14 and Fig. 15, the solution may 
appear in a flash: There are two right triangles, they are 
congruent, there is an all-important new point of inter­
section. 

Could you restate the problem? Could you restate it 
still differently? These questions aim at suitable VARIA­

TION OF THE PROBLEM. 

Go back to definitions. See DEFINITION. 

Decomposing and recombining are important opera­
tions of the mind. 

You examine an object that touches your interest or 
challenges your curiosity: a house you intend to rent, an 
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important but cryptic telegram, any object whose pur­
pose and origin puzzle you, or any problem you intend 
to solve. You have an impression of the object as a whole 
but this impression, possibly, is not definite enough. A 
detail strikes you, and you focus your attention upon it. 
Then, you concentrate upon another detail; then, again, 
upon another. Various combinations of details may pre­
sent themselves and after a while you again consider the 
object as a whole but you see it now differently. You de­
compose the whole into its parts, and you recombine the 
parts into a more or less different whole. 

1. If you go into detail you may lose yourself in de­
tails. Too many or too minute particulars are a burden 
on the mind. They may prevent you from giving suffi­
cient attention to the main point, or even from seeing 
the main point at all. Think of the man who cannot see 
the forest for the trees. 

Of course, we do not wish to waste our time with un­
necessary detail and we should reserve our effort for the 
essential. The difficulty is that we cannot say beforehand 
which details will turn out ultimately as necessary and 
which will not. 

Therefore, let us, first of all, understand the problem 
as a whole. Having understood the problem, we shall be 
in a better position to judge which particular points may 
be the most essential. Having examined one or two 
essential points we shall be in a better position to judge 
which further details might deserve closer examination. 
Let us go into detail and decompose the problem gradu­
ally, but not further than we need to. 

Of course, the teacher cannot expect that all students 
should act wisely in this respect. On the contrary, it is a 
very foolish and bad habit with some students to start 
working at details before having understood the problem 
as a whole. 
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2. We are going to consider mathematical problems, 

"problems to find." 
Having understood the problem as a whole, its aim, its 

main point, we wish to go into detail. Where should we 
start? In almost all cases, it is reasonable to begin with 
the consideration of the principal parts of the problem 
which are the unknown, the data, and the condition. In 
almost all cases it is advisable to start the detailed ex­
amination of the problem with the questions: What is 
the unknown? What are the data? What is the condition? 

If we wish to examine further details, what should we 
do? Fairly often, it is advisable to examine each datum 
by itself, to separate the various parts of the condition, 
and to examine each part by itself. 

We may find it necessary, especially if our problem is 
more difficult, to decompose the problem still further, 
and to examine still more remote details. Thus, it may 
be necessary to go back to the definition of a certain term, 
to introduce new elements involved by the definition, 
and to examine the elements so introduced. 

3· After having decomposed the problem, we try to 
recombine its elements in some new manner. Especially, 
we may try to recombine the elements of the problem 
into some new, more accessible problem which we could 
possibly use as an auxiliary problem. 

There are, of course, unlimited possibilities of recom­
bination. Difficult problems demand hidden, exceptional, 
original combinations, and the ingenuity of the problem­
solver shows itself in the originality of the combination. 
There are, however, certain usual and relatively simple 
sorts of combinations, sufficient for simpler problems, 
which we should know thoroughly and try first, even if 
we may be obliged eventually to resort to less obvious 
means. 

There is a formal classification in which the most usual 
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and useful combinations are neatly placed. In construc­
ting a new problem from the proposed problem, we may 

( 1) keep the unknown and change the rest (the data 
and the condition); or 

(2) keep the data and change the rest (the unknown 
and the condition); or 

(3) change both the unknown and the data. 
We are going to examine these cases. 
[The cases (1) and (2) overlap. In fact, it is possible 

to keep both the unknown and the data, and transform 
the problem by changing the form of the condition alone. 
For instance, the two following problems, although visi­
bly equivalent, are not exactly the same: 

Construct an equilateral triangle, being given a side. 
Construct an equiangular triangle, being given a side. 
The difference of the two statements which is slight in 

the present example m ay be momentous in other cases. 
Such cases are even important in certain respects but it 
would take up too much space to discuss them here. 
Compare AUXILIARY PROBLEMS, 7, last remark.] 

4· Keeping the unknown and changing the data and 
the condition in order to transform the proposed prob­
lem is often useful. The suggestion LOOK AT THE UN­

KNOWN aims at problems with the same unknown. We 
may try to recollect a formerly solved problem of this 
kind: And try to think of a familiar problem having the 
same or a similar unknown. Failing to remember such a 
problem we may try to invent one: Could you think of 
other data appropriate to determine the unknown? 

A new problem which is more closely related to the 
proposed problem has a better chance of being useful. 
Therefore, keeping the unknown, we try to keep also 
some data and some part of the condition, and to change, 
as little as feasible, only one or two data and a small part 
of the condition. A good method is one in which we omit 
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something without adding anything; we keep the un­
known, keep only a part of the condition, drop the other 
part, but do not introduce any new clause or datum. 
Examples and comments on this case follow under 7, 8. 

5· Keeping the data, we may try to introduce some use­
ful and more accessible new unknown. Such an unknown 
must be obtained from the original data and we have 
such an unknown in mind when we ask: couLD You DE­

RIVE SOMETHING USEFUL FROM THE DATA? 

Let us observe that two things are here desirable. First, 
the new unknown should be more accessible, that is, 
more easily obtainable from the data than the original 
unknown. Second, the new unknown should be useful, 
that is, it should be, when found, capable of rendering 
some definite service in the search of the original un­
known. In short, the new unknown should be a sort of 
stepping stone. A stone in the middle of the creek is 
nearer to me than the other bank which I wish to arrive 
at and, when the stone is reached, it helps me on toward 
the other bank. 

The new unknown should be both accessible and use­
ful but, in practice, we must often content ourselves with 
less. If nothing better presents itself, it is not unreason­
able to derive something from the data that has some 
chance of being useful; and it is also reasonable to try a 
new unknown which is closely connected with the orig­
inal one, even if it does not seem particularly accessible 
from the outset. 

For instance, if our problem is to find the diagonal of 
a parallelepiped (as in section 8) we may introduce the 
diagonal of a face as new unknown. We may do so either 
because we know that if we have the diagonal of the face 
we can also obtain the diagonal of the solid (as in sec­
tion 10); or we may do so because we see that the 
diagonal of the face is easy to obtain and we suspect that 
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it might be useful in finding the diagonal of the solid. 
(Compare DID YOU USE ALL THE DATA? 1.) 

If our problem is to construct a circle, we have to find 
two things, its center and its radius; our problem has 
two parts, we may say. In certain cases, one part is more 
accessible than the other and therefore, in any case, we 
may reasonably give a moment's consideration to this 
possibility: Could you solve a part of the problem? Ask­
ing this, we weigh the chances: Would it pay to concen­
trate just upon the center, or just upon the radius, and 
to choose one or the other as our new unknown? Ques­
tions of this sort are very often useful. In more complex 
or in more advanced problems, the decisive idea often 
consists in carving out some more accessible but essential 
part from the problem. 

6. Changing both the unknown and the data we devi­
ate more from our original course than in the foregoing 
cases. This, naturally, we do not like; we sense the dan­
ger of losing the original problem altogether. Yet we may 
be compelled to such an extensive change if less radical 
changes have failed to produce something accessible and 
useful, and we may be tempted to recede so far from our 
original problem if the new problem has a good chance 
of success. Could you change the unknown, or the data} 
or both if necessary} so that the new unknown and the 
new data are nearer to each other? 

An interesting way of changing both the unknown and 
the data is interchanging the unknown with one of the 
data. (See CAN YOU USE THE RESULT? 3·) 

7· Example. Construct a triangle, being given a side a} 
the altitude h perpendicular to a, and the angle a oppo­
site to a. 

What is the unknown? A triangle. 
What are the data? Two lines, a and h, and an angle a. 

Now, if we are somewhat familiar with problems of 
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geometric construction, we try to reduce such a problem 
to the construction of a point. We draw a line BC equal 
to the given side a; then all that we have to find is the 
vertex of the triangle A, opposite to a, see Fig. 16. We 
have, in fact, a new problem. 
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What is the unknown? The point A. 
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What are the data? A line h, an angle a, and two points 
Band C given in position. 

What is the condition? The perpendicular distance of 
the point A from the line BC should be h and LBAC 
=a. 

In fact, we have transformed our problem, changing 
both the unknown and the data. The new unknown is a 
point, the old unknown was a triangle. Some of the data 
are the same in both problems, the line h and the angle 
a; but in the old problem we were given a length a and 
now we are given two points, B and C, instead. 

The new problem is not difficult. The following sug­
gestion brings us quite near to the solution. 

Separate the various parts of the condition. The con­
dition has two parts, one concerned with the datum h, 
the other with the datum a . The unknown point is 
required to be 



Decomposing and Recombining 

(I) at distance h from the line BC; and 
(ll) the vertex of an angle of given magnitude a, 

whose sides pass through the given points B and C. 
If we keep only one part of the condition and drop the 

other jJart, the unknown point is not completely deter­
mined. There are many points satisfying part (I) of the 
condition, namely all points of a parallel to the line BC 
at the distance h from BC.2 This parallel is the locus of 
the points satisfying part (I) of the condition. The locus 
of the points satisfying part (II) is a certain circular arc 
whose end-points are Band C. We can describe both loci; 
their intersection is the point that we desired to con­
struct. 

The procedure that we have just applied has a certain 
interest; solving problems of geometric construction, we 
can often follow successfully its pattern: Reduce the 
problem to the construction of a point, and construct the 
point as an intersection of two loci. 

But a certain step of this procedure has a still more 
general interest; solving "problems to find" of any kind, 
we can follow its pattern: Keep only a part of the condi­
tion, drop the other part. Doing so, we weaken the con­
dition of the proposed problem, we restrict less the 
unknown. How far is the unknown then determined, 
how can it vary? By asking this, we set, in fact, a new 
problem. If the unknown is a point in the plane (as it 
was in our example) the solution of this new problem 
consists in determining a locus described by the point. 
If the unknown is a mathematical object of some other 
kind (it was a square in section 18) we have to describe 
properly and to characterize precisely a certain set of 
objects. Even if the unknown is not a mathematical 

2 The plane is bisected by the line through B and C. We choose 
one of the halfplanes to construct A in it, and so \Me may consider 
just one parallel to BC; otherwise, we should consider two such 
parallels. 
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object (as in the next example, under 8) it may be useful 
to consider, to characterize, to describe, or to list those 
objects which satisfy a certain part of the condition im­
posed upon the unknown by the proposed problem. 

8. Example. In a crossword puzzle that allows puns 
and anagrams we find the following clue: 

"Forward and backward part of a machine (5 letters)." 
What is the unknown? A word. 
What is the condition? The word has 5 letters. It has 

something to do with some part of some machine. It 
should be, of course, an English word, and not a too 
unusual one, let us hope. 

Is the condition sufficient to determine the unknown? 
No. Or, rather, the condition may be sufficient but that 
part of the condition which is clear by now is certainly 
insufficient. There are too many words satisfying it, as 
"lever," or "screw," or what not. 

The condition is ambiguously expressed-on purpose, 
of course. If nothing can be found that could be plausibly 
described as a "forward part" of a machine and would be 
a "backward part" too, we may suspect that forward and 
backward reading might be meant. It may be a good idea 
to examine this interpretation of the clue. 

Separate the various parts of the condition. The con­
dition has two parts, one concerned with the meaning of 
the word, the other with its spelling. The unknown word 
is required to be 

(I) a short word meaning some part of some machine; 
(II) a word with 5 letters which spelled backward 

give again a word meaning some part of some machine. 
If we keep only one part of the condition and drop the 

other part, the unknown is not completely determined. 
There are many words satisfying part (I) of the condi­
tion, we have a sort of locus. We may "describe" this 
locus (I), "follow" it to its "intersection" with locus 
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(II). The natural procedure is to concentrate upon part 
(I) of the condition, to recollect words having the pre­
scribed meaning and, when we have succeeded in recol­
lecting some such word, to examine whether it has or has 
not the prescribed length and can or cannot be read 
backward. We may have to recollect several words before 
we run into the right one: lever, screw, wheel, shaft, 
hinge, motor. 

Of course, "rotor" I 
g. Under 3, we classified the possibilities of obtaining 

a new "problem to find" by recombining certain ele­
ments of a proposed "problem to find." If we do not in­
troduce just one new problem, but two or more new 
problems, there are more possibilities which we have to 
mention but do not attempt to classify. 

Still other possibilities may arise. Especially, the solu­
tion of a "problem to find" may depend on the solution 
of a "problem to prove." We just mention this important 
possibility; considerations of space prevent us from dis­
cussing it. 

10. Only few and short remarks can be added concern­
ing "problems to prove"; they are analogous to the 
foregoing more extensive comments on "problems to 
find" ( 2 to g) . 

Having understood such a problem as a whole, we 
should, in general, examine its principal parts. The 
principal parts are the hypothesis and the conclusion 
of the theorem that we are required to prove or to 
disprove. We should understand these parts thoroughly: 
What is the hypothesis? What is the conclusion? If 
there is need to get down to more particular points, 
we may separate the various parts of the hypothesis, 
and consider each part by itself. Then we may proceed 
to other details, decomposing the problem further and 
further. 
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After having decomposed the problem, we may try to 
recombine its elements in some new manner. Especially, 
we may try to recombine the elements into another 
theorem. In this respect, there are three possibilities. 

(1) We keep the conclusion and change the hypoth­
esis. We first try to recollect such a theorem: Look at the 
conclusion! And try to think of a familiar theorem hav­
ing the same or a similar conclusion. If we do not 
succeed in recollecting such a theorem we try to invent 
one: Could you think of another hypothesis from which 
you could easily derive the conclusion? We may change 
the hypothesis by omitting something without adding 
anything: Keep only a part of the hypothesis, drop the 
other part; is the conclusion still valid? 

( 2) We keep the hypothesis and change the conclu­
sion: Could you derive something useful from the hy­
pothesis? 

(3) We change both the hypothesis and the conclu­
sion. We may be more inclined to change both if we 
have had no success in changing just one. Could you 
change the hypothesis, or the conclusion, or both if 
necessary, so that the new hypothesis and the new con­
clusion are nearer to each other? 

We do not attempt to classify here the various pos­
sibilities which arise when, in order to solve the proposed 
"problem to prove," we introduce two or more new 
"problems to prove," or when we link it up with an 
appropriate "problem to find." 

Definition of a term is a statement of its meaning in 
other terms which are supposed to be well known. 

1. Technical terms in mathematics are of two kinds. 
Some are accepted as primitive terms and are not defined. 
Others are considered as derived terms and are defined 
in due form; that is, their meaning is stated in primitive 
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terms and in formerly defined derived terms. Thus, we 
do not give a formal definition of such primitive notions 
as point, straight line, and plane.s Yet we give formal 
definitions of such notions as "bisector of an angle" or 
"circle" or "parabola." 

The definition of the last quoted term may be stated 
as follows. We call parabola the locus of points which are 
at equal distance from a fixed point and a fixed straight 
line. The fixed point is called the focus of the parabola, 
the fixed line its directrix. It is understood that all ele­
ments considered are in a fixed plane, and that the fixed 
point (the focus) is not on the fixed line (the directrix). 

The reader is not supposed to know the meaning of 
the terms defined: parabola, focus of the parabola, 
directrix of the parabola. But he is supposed to know the 
meaning of all the other terms as point, straight line, 
plane, distance of a point from another point, fixed, 
locus, etc. 

2. Definitions in dictionaries are not very much differ­
ent from mathematical definitions in the outward form 
but they are written in a different spirit. 

The writer of a dictionary is concerned with the cur­
rent meaning of the words. He accepts, of course, the 
current meaning and states it as neatly as he can in form 
of a definition. 

The mathematician is not concerned with the current 
meaning of his technical terms, at least not primarily 
concerned with that. What "circle" or "parabola" or 
other technical terms of this kind may or may not denote 
in ordinary speech matters little to him. The mathemati­
cal definition creates the mathematical meaning. 

sIn this respect, ideas have changed since the time of Euclid and 
his Greek followers who defined the point, the straight line, and the 
plane. Their "definitions" however are scarcely formal definitions, 
rather intuitive illustrations of a sort. Illustrations, of course, are 
allowed, and even very desirable in teaching. 
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3· Example. Construct the point of intersection of a 
given straight line and a parabola of which the focus and 
the directrix are given. 

Our approach to any problem must depend on the 
state of our knowledge. Our approach to the present 
problem depends mainly on the extent of our acquaint­
ance with the properties of the parabola. If we Jmow 
much about the parabola we try to make use of our 
knowledge and to extract something helpful from it: Do 
you know a theorem that could be useful? Do you know 
a related problem? If we know little about parabola, 
focus, and directrix, these terms are rather embarrassing 
and we naturally wish to get rid of them. How can we 
get rid of them? Let us listen to the dialogue of the 
teacher and the student discussing the proposed problem. 
They have chosen already a suitable notation: P for any 
of the unknown points of intersection, F for the focus, d 
for the directrix, c for the straight line intersecting the 
parabola. 

"And what is the unknown?" 
"The point P." 
"What are the data?" 
"The straight lines c and d, and the point F." 
"What is the condition?" 
"P is a point of intersection of the straight line c and 

of the parabola whose directrix is d and focus F." 
"Correct. You had little opportunity, I know, to study 

the parabola but you can say, I think, what a parabola 
is." 

"The parabola is the locus of points equidistant from 
the focus and the directrix." 

"Correct. You remember the definition correctly. That 
is right, but we must also use it; go back to definitions. 
By virtue of the definition of the parabola, what can you 
say about your point P?" 
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"Pis on the parabola. Therefore, Pis equidistant from 
d and F." 

"Good! Draw a figure." 

d Q 

FIG. 17 

The student introduces into Fig. 17 the lines PF and 
PQ, this latter being the perpendicular to d from P. 

"Now, could you restate the problem?" 

"Could you restate the condition of the problem, using 
the lines you have just introduced?" 

"P is a point on the line c such that PF = PQ." 
"Good. But please, say it in words: What is PQ?" 
"The perpendicular distance of P from d." 
"Good. Could you restate the problem now? But please, 

state it neatly, in a round sentence." 
"Construct a point P on the given straight line c at 

equal distances from the given point F and the given 
straight line d." 

"Observe the progress from the original statement to 
your restatement. The original statement of the problem 
was full of unfamiliar technical terms, parabola, focus, 
directrix; it sounded just a little pompous and inflated. 
And now, nothing remains of those unfamiliar technical 
terms; you have deflated the problem. \Veil done!" 
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4· Elimination of technical terms is the result of the 
work in the foregoing example. We started from a state­
ment of the problem containing certain technical terms 
(parabola, focus, directrix) and we arrived finally at a 
restatement free of those terms. 

In order to eliminate a technical term we must know 
its definition; bui it is not enough to know the defini­
tion, we must use it. In the foregoing example, it was not 
enough to remember the definition of the parabola. The 
decisive step was to introduce into the figure the lines 
PF and PQ whose equality was granted by the definition 
of the parabola. This is the typical procedure. We intro­
duce suitable elements into the conception of the prob­
lem. On the basis of the definition, we establish relations 
between the elements we introduced. If these relations 
express completely the meaning, we have used the defini­
tion. Having used its definition, we have eliminated the 
technical term. 

The procedure just described may be called going back 
to definitions. 

By going back to the definition of a technical term, we 
get rid of the term but introduce new elements and new 
relations instead. The resulting change in our conception 
of the problem may be important. At any rate, some 
restatement, some VARIATION OF THE PROBLEM is bound 
to result. 

5· Definitions and known theorems. If we know the 
name "parabola" and have some vague idea of the shape 
of the curve but do not know anything else about it, our 
knowledge is obviously insufficient to solve the problem 
proposed as example, or any other serious geometric 
problem about the parabola. What kind of knowledge is 
needed for such a purpose? 

The science of geometry may be considered as con­
sisting of axioms, definitions, and theorems. The parab-
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ola is not mentioned in the axioms which deal only 
with such primitive terms as point, straight line, and so 
on. Any geometric argumentation concerned with the 
parabola, the solution of any problem involving it, must 
use either its definition or theorems about it. To solve 
such a problem, we must know, at least, the definition 
but it is better to know some theorems too. 

What we said about the parabola is true, of course, of 
any derived notion. As we start solving a problem that 
involves such a notion, we cannot know yet what will be 
preferable to use, the definition of the notion, or some 
theorem about it; but it is certain that we have to use 
one or the other. 

There are ca&es, however, in which we have no choice. 
If we know just the definition of the notion, and nothing 
else, then we are obliged to use the definition. If we do 
not know much more than the definition, our best chance 
may be to go back to the definition. But if we know many 
theorems about the notion, and have much experience 
in its use, there is some chance that we may get hold of 
a suitable theorem involving it. 

6. Several definitions. The sphere is usually defined as 
the locus of points at a given distance from a given point. 
(The points are now in space, not restricted to a plane.) 
Yet the sphere could also be defined as the surface de­
scribed by a circle revolving about a diameter. Still other 
definitions of the sphere are known, and many others 
possible. 

When we have to solve a proposed problem involving 
some derived notion, as "sphere" or "parabola," and we 
wish to go back to its definition, we may have a choice 
among various definitions. Much may depend in such a 
case on choosing the definition that fits the case. 

To find the area of the surface of the sphere was, at the 
time Archimedes solved it, a great and difficult problem. 
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Archimedes had the choice between the definitions of the 
sphere we just quoted. He preferred to conceive the 
sphere as the surface generated by a circle revolving 
about a fixed diameter. He inscribes in the circle a regu­
lar polygon, with an even number of sides, of which the 
fixed diameter joins opposite vertices. The regular poly­
gon approximates the circle and, revolving with the 
circle, generates a convex surface composed of two cones 
with vertices at the extremities of the fixed diameter and 
of several frustums of cones in between. This composite 
surface approximates the sphere and is used by Archi­
medes in computing the area of the surface of the sphere. 
If we conceive the sphere as the locus of points equally 
distant from the center, no such simple approximation 
to its surface is suggested. 

7· Going back to definitions is important in inventing 
an argument but it is also important in checking it. 

Somebody presents an alleged new solution of Archi­
medes' problem of finding the area of the surface of the 
sphere. If he has only a vague idea of the sphere, his 
solution will not be any good. He may have a clear idea 
of the sphere but if he fails to use this idea in his argu­
ment I cannot know that he had any idea at all, and his 
argument is no good. Therefore, listening to the argu­
ment, I am waiting for the moment when he is going to 
say something substantial about the sphere, to use its 
definition or some theorem about it. If such a moment 
never comes, the solution is no good. 

We should check not only the arguments of others but, 
of course, also our own arguments, in the same way. 
Have you taken into account all essential notions in­
volved in the problem? How did you use this notion? 
Did you use its meaning, its definition? Did you use 
essential facts, known theorems about it? 

That going back to definitions is important in examin-
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ing the validity of an argument was emphasized by Pascal 
who stated the rule: "Substituer mentalement les defini­
tions a la place des definis." The meaning is: "Substitute 
mentally the defining facts for the defined terms." That 
going back to definitions is also important in devising 
an argument was emphasized by Hadamard. 

8. Going back to definitions is an important operation 
of the mind. If we wish to understand why the defini­
tions of words are so important, we should realize first that 
words are important. We can hardly use our mind without 
using words, or signs, or symbols of some sort. Thus, words 
and signs have power. Primitive peoples believe that 
words and symbols have magic power. We may under­
stand such belief but we should not share it. We should 
know that the power of a word does not reside in its 
sound, in the "vocis flatus," in the "hot air" produced 
by the speaker, but in the ideas of which the word re­
minds us and, ultimately, in the facts on which the ideas 
are based. 

Therefore, it is a sound tendency to seek meaning and 
facts behind the words. Going back to definitions, the 
mathematician seeks to get hold of the actual relations 
of mathematical objects behind the technical terms, as 
the physicist seeks definite experiments behind his tech­
nical terms, and the common man with some common 
sense wants to get down to hard facts and not to be 
fooled by mere words. 

Descartes, Rene (1596-1650), great mathematician and 
philosopher, planned to give a universal method to solve 
problems but he left unfinished his Rules for the Direc­
tion of the Mind. The fragments of this treatise, found 
in his manuscripts and printed after his death, contain 
more-and more interesting-materials concerning the 
solution of problems than his better known work Dis-
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cours de la Methode although the "Discours" was very 
likely written after the "Rules." The following lines of 
Descartes seem to describe the origin of the "Rules": "As 
a young man, when I heard about ingenious inventions, 
I tried to invent them by myself, even without reading 
the author. In doing so, I perceived, by degrees, that I 
was making use of certain rules." 

Determination, hope, success. It would be a mistake to 
think that solving problems is a purely "intellectual 
affair"; determination and emotions play an important 
role. Lukewarm determination and sleepy consent to do 
a little something may be enough for a routine problem 
in the classroom. But, to solve a serious scientific prob­
lem, will power is needed that can outlast years of toil 
and bitter disappointments. 

1. Determination fluctuates with hope and hopeless­
ness, with satisfaction and disappointment. It is easy to 
keep on going when we think that the solution is just 
around the corner; but it is hard to persevere when we 
do not see any way out of the difficulty. We are elated 
when our forecast comes true. We are depressed when 
the way we have followed with some confidence is sud­
denly blocked, and our determination wavers. 

"Il n'est point besoin esperer pour entreprendre ni 
reussir pour perseverer." "You can undertake without 
hope and persevere without success." Thus may speak 
an inflexible will, or honor and duty, or a nobleman with 
a noble cause. This sort of determination, however, 
would not do for the scientist, who should have some hope 
to start with, and some success to go on. In scientific 
work, it is necessary to apportion wisely determination 
to outlook. You do not take up a problem, unless it has 
some interest; you settle down to work seriously if the 
problem seems instructive; you throw in your whole 
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personality if there is a great promise. If your purpose is 
set, you stick to it, but you do not make it unnecessarily 
difficult for yourself. You do not despise little successes, 
on the contrary, you seek them: If you cannot solve 
the proposed problem try to solve first some related 
problem. 

2. When a student makes really silly blunders or is 
exasperatingly slow, the trouble is almost always the 
same; he has no desire at all to solve the problem, even 
no desire to understand it properly, and so he has not 
understood it. Therefore, a teacher wishing seriously to 
help the student should, first of all, stir up his curiosity, 
give him some desire to solve the problem. The teacher 
should also allow some time to the student to make up 
his mind, to settle down to his task. 

Teaching to solve problems is education of the will. 
Solving problems which are not too easy for him, the 
student learns to persevere through unsuccess, to appre­
ciate small advances, to wait for the essential idea, to 
concentrate with all his might when it appears. If the 
student had no opportunity in school to familiarize 
himself with the varying emotions of the struggle for the 
solution his mathematical education failed in the most 
vital point. 

Diagnosis is used here as a technical term in education 
meaning "closer characterization of the student's work." 
A grade characterizes the student's work but somewhat 
crudely. The teacher, wishing to improve the student's 
work, needs a closer characterization of good and bad 
points as the physician, wishing to improve the patient's 
health, needs a diagnosis. 

We are here particularly concerned with the student's 
efficiency in solving problems. How can we characterize 
it? We may derive some profit from the distinction of the 
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four phases of the solution. In fact, the behavior of the 
students in the various phases is quite characteristic. 

Incomplete understanding of the problem, owing to 
lack of concentration, is perhaps the most widespread 
deficiency in solving problems. With respect to devising 
a plan and obtaining a general idea of the solution two 
opposite faults are frequent. Some students rush into 
calculations and constructions without any plan or gen­
eral idea; others wait clumsily for some idea to come and 
cannot do anything that would accelerate its coming. In 
carrying out the plan, the most frequent fault is careless­
ness, lack of patience in checking each step. Failure to 
check the result at all is very frequent; the student is 
glad to get an answer, throws down his pencil, and is not 
shocked by the most unlikely results. 

The teacher, having made a careful diagnosis of a fault 
of this kind, has some chance to cure it by insisting on 
certain questions of the list. 

Did you use all the data? Owing to the progressive mo­
bilization of our knowledge, there will be much more in 
our conception of the problem at the end than was in it 
at the outset (PROGRESS AND ACHIEVEMENT, 1). But how is 
it now? Have we got what we need? Is our conception 
adequate? Did you use all the data? Did you use the 
whole condition? The corresponding question concerning 
"problems to prove" is: Did you use the whole hy­
pothesis? 

1. For an illustration, let us go back to the "parallele­
piped problem" stated in section 8 (and followed up in 
sections 10, 12, 14, 15). It may happen that a student 
runs into the idea of calculating the diagonal of a face, 
y a2 + 7)2, but then he gets stuck. The teacher may help 
him by asking: Did you use all the data? The student 
can scarcely fail to observe that the expression y a2 + b2 
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does not contain the third datum c. Therefore, he should 
try to bring c into play. Thus, he has a good chance to 
observe the decisive right triangle whose legs are 
y a2 + b2 and c, and whose hypotenuse is the desired 
diagonal of the parallelepiped. (For another illustration 
see AUXILIARY ELEMENTS, 3·) 

The questions we discuss here are very important. 
Their use in constructing the solution is clearly shown 
by the foregoing example. They may help us to find the 
weak spot in our conception of the problem. They may 
point out a missing element. When we know that a cer­
tain element is still missing, we naturally try to bring it 
into play. Thus, we have a clue, we have a definite line 
of inquiry to follow, and have a good chance to meet 
with the decisive idea. 

2. The questions we discussed are helpful not only in 
constructing an argument but also in checking it. In 
order to be more concrete, let us assume that we have to 
check the proof of a theorem whose hypothesis consists 
of three parts, all three essential to the truth of the 
theorem. That is, if we discard any part of the hypothe­
sis, the theorem ceases to be true. Therefore, if the proof 
neglects to use any part of the hypothesis, the proof must 
be wrong. Does the proof use the whole hypothesis? Does 
it use the first part of the hypothesis? Where does it use 
the first part of the hypothesis? Where does it use the 
second part? Where the third? Answering to all these 
questions we check the proof. 

This sort of checking is effective, instructive, and al­
most necessary for thorough understanding if the argu­
ment is long and heavy-as THE INTELLIGENT READER 

should know. 
3· The questions we discussed aim at examining the 

completeness of our conception of the problem. Our con­
ception is certainly incomplete if we fail to take into 
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account any essential datum or condition or hypothesis. 
But it is also incomplete if we fail to realize the meaning 
of some essential term. Therefore, in order to examine 
our conception, we should also ask: Have you taken into 
account all essential notions involved in the problem? 
See DEFINITION, 7· 

4· The foregoing remarks, however, are subject to cau­
tion and certain limitations. In fact, their straightfor­
ward application is restricted to problems which are 
"perfectly stated" and "reasonable." 

A perfectly stated and reasonable "problem to find" 
must have all necessary data and not a single superfluous 
datum; also its condition must be just sufficient, neither 
contradictory nor redundant. In solving such a problem, 
we have to use, of course, all the data and the whole 
condition. 

The object of a "problem to prove" is a mathematical 
theorem. If the problem is perfectly stated and reason­
able, each clause in the hypothesis of the theorem must 
be essential to the conclusion. In proving such a theorem 
we have to use, of course, each clause of the hypothesis. 

Mathematical problems proposed in traditional text­
books are supposed to be perfectly stated and reasonable. 
We should however not rely too much on this; when 
there is the slightest doubt, we should ask: IS IT POSSIBLE 

TO SATISFY THE CONDITION? Trying to answer this ques­
tion, or a similar one, we may convince ourselves, at least 
to a certain extent, that our problem is as good as it is 
supposed to be. 

The question stated in the title of the present article 
and allied questions may and should be asked without 
modification only when we know that the problem before 
us is reasonable and perfectly stated or when, at least, 
we have no reason to suspect the contrary. 

5· There are some nonmathematical problems which 
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may be, in a certain sense, "perfectly stated." For in­
stance, good chess problems are supposed to have but 
one solution and no superfluous piece on the chess­
board, etc. 

PRACTICAL PROBLEMS however are usually far from 
being perfectly stated and require a thorough reconsid­
eration of the questions discussed in the present article. 

Do you know a related problem? vVe can scarcely 
imagine a problem absolutely new, unlike and unrelated 
to any formerly solved problem; but, if such a problem 
could exist, it would be insoluble. In fact, when solving 
a problem, we always profit from previously solved prob­
lems, using their result, or their method, or the experi­
ence we acquired solving them. And, of course, the 
problems from which we profit must be in some way 
related to our present problem. Hence the question: Do 
you know a related problem? 

There is usually no difficulty at all in recalling for­
merly solved problems which are more or less related to 
our present one. On the contrary, we may find too many 
such problems and there may be difficulty in choosing a 
useful one. We have to look around for closely related 
problems; we LOOK AT THE UNKNOWN, or we look for a 
formerly solved problem which is linked to our present 
one by GENERALIZATION, SPECIALIZATION, Or ANALOGY. 

The question we discuss here aims at the mobilization 
of our formerly acquired knowledge (PROGRESS AND 

ACHIEVEMENT, 1) . An essential part of our mathematical 
knowledge is stored in the form of formerly proved 
theorems. Hence the question: Do you know a theorem 
that could be useful? This question may be particularly 
suitable when our problem is a "problem to prove," that 
is, when we have to prove or disprove a proposed 
theorem. 
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Draw a figure; see FIGURES. Introduce suitable nota­

tion; see NOTATION. 

Examine your guess. Your guess may be right, but it is 
foolish to accept a vivid guess as a proven truth-as 
primitive people often do. Your guess may be wrong. But 
it is also foolish to disregard a vivid guess altogether-as 
pedantic people sometimes do. Guesses of a certain kind 
deserve to be examined and taken seriously: those which 
occur to us after we have attentively considered and 
really understood a problem in which we are genuinely 
interested. Such guesses usually contain at least a frag­
ment of the truth although, of course, they very seldom 
show the whole truth. Yet there is a chance to extract the 
whole truth if we examine such a guess appropriately. 

Many a guess has turned out to be wrong but never­
theless useful in leading to a better one. 

No idea is really bad, unless we are uncritical. What is 
really bad is to have no idea at all. 

1. Don't. Here is a typical story about Mr. John Jones. 
Mr. Jones works in an office. He had hoped for a little 
raise but his hope, as hopes often are, was disappointed. 
The salaries of some of his colleagues were raised but not 
his. Mr. Jones could not take it calmly. He worried and 
worried and finally suspected that Director Brown was 
responsible for his failure in getting a raise. 

We cannot blame Mr. Jones for having conceived such 
a suspicion. There were indeed some signs pointing to 
Director Brown. The real mistake was that, after having 
conceived that suspicion, Mr. Jones became blind to all 
signs pointing in the opposite direction. He worried him­
self into firmly believing that Director Brown was his 
personal enemy and behaved so stupidly that he almost 
succeeded in making a real enemy of the director. 

The trouble with Mr. John Jones is that he behaves 
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like most of us. He never changes his major opinions. He 
changes his minor opinions not infrequently and quite 
suddenly; but he never doubts any of his opinions, major 
or minor, as long as he has them. He never doubts them, 
or questions them, or examines them critically-he would 
especially hate critical examination, if he understood 
what that meant. 

Let us concede that Mr. John Jones is right to a certain 
extent. He is a busy man; he has his duties at the office 
and at home. He has little time for doubt or examina­
tion. At best, he could examine only a few of his con­
victions and why should he doubt one if he has no time 
to examine that doubt? 

Still, don't do as Mr. John Jones does. Don't let your 
suspicion, or guess, or conjecture, grow without exami­
nation till it becomes ineradicable. At any rate, in theo­
retical matters, the best of ideas is hurt by uncritical 
acceptance and thrives on critical examination. 

2. A mathematical example. Of all quadrilaterals with 
given perimeter, find the one that has the greatest area. 

What is the unknown? A quadrilateral. 
What are the data? The perimeter of the quadrilateral 

is given. 
TV hat is the condition? The required quadrilateral 

should have a greater area than any other quadrilateral 
with the same perimeter. 

This problem is very different from the usual prob­
lems in elementary geometry and, therefore, it is quite 
natural to start guessing. 

Which quadrilateral is likely to be the one with the 
greatest area? \Vhat would be the simplest guess? We may 
have heard that of all figures with the same perimeter the 
circle has the greatest area; we may even suspect some 
reason for the plausibility of this sta te.Jent. Now, which 
quadrilateral comes nearest to the circle? Which one 
comes nearest to it in symmetry? 
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The square is a pretty obvious guess. If we take this 
guess seriously, we should realize what it means. We 
should have the courage to state it: "Of all quadrilaterals 
with given perimeter the square has the greatest area." 
If we decide ourselves to examine this statement, the 
situation changes. Originally, we had a "problem to 
find." After having formulated our guess, we have a 
"problem to prove"; we have to prove or disprove the 
theorem formulated. 

If we do not know any problem similar to ours that has 
been solved before, we may find our task pretty tough. If 
you cannot solve the proposed problem, try to solve first 
some related problem. Could you solve a part of the 
problem? It may occur to us that if the square is priv­
ileged among quadrilaterals it must, by that very fact, 
also be privileged among rectangles. A part of our prob­
lem would be solved if we could succeed in proving the 
following statement: "Of all rectangles with given perim­
eter the square has the greatest area." 

This theorem appears more accessible than the former; 
it is, of course, weaker. At any rate, we should realize 
what it means; we should have the courage to restate it 
in more detail. We can restate it advantageously in the 
language of algebra. 

The area of a rectangle with adjacent sides a and b 
is ab. Its perimeter is 2a + 2b. 

One side of the square that has the same perimeter as 

the rectangle just mentioned is a + b. Thus, the area of 
2 

this square is (a -;- by. It should be greater than the 

area of the rectangle, and so we should have 

(a-;- b)z > ab. 
Is this true? The same assertion can be written in the 
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equivalent form 

a2 + 2ab + b2 > 4ab. 

This, however, is true, for it is equivalent to 

a2 - 2ab + b2 > o 
or to 

(a- b)2 > o 

and this inequality certainly holds, unless a = b, that is, 
the rectangle examined is a square. 

"\Ve have not solved our problem yet, but we have 
made some progress just by facing squarely our rather 
obvious guesses. 

3· A nonmathematical example. In a certain crossword 
puzzle we have to find a word with seven letters, and the 
clue is: "Do the walls again, back and forth."4 

What is the unknown? A word. 
What are the data? The length of the word is given; it 

has seven letters. 
What is the condition? It is stated in the clue. It has 

something to do with walls, yet it is still very hazy. 
Thus, we have to reexamine the clue. As we do so, the 

last part may catch our attention: " ... again, back and 
forth." Could you solve a part of the problem? Here is a 
chance to guess the beginning of the word. Since the 
repetition is so strongly emphasized, the word, quite 
possibly, might start with "re." This is a pretty obvious 
guess. If we are tempted to believe it, we should realize 
what it means. The word required would look thus: 

RE-----

Can you check the result? If another word of the puz­
zle crosses the one just considered in the first letter, we 
have an R to start that other word. It may be a good idea 

4 The Nation, June g, 1945, Crossword Puzzle, No. 119. 
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to switch to that other word and check the R. If we 
succeed in verifying that R or if, at least, we do not find 
any reason against it, we come back to our original word. 
We ask again: What is the condition? As we reexamine 
the clue, the very last part may catch our attention: 
" ... back and forth." Could this imply that the word 
we seek can be read not only forward but backward? 
This is a less obvious guess (yet there are such cases, see 
DECOMPOSING AND RECOMBINING, 8) . 

At any rate, let us face this guess; let us realize what it 
means. The word would look as follows: 

RE --- ER. 

Moreover, the third letter should be the same as the fifth; 
it is very likely a consonant and the fourth or middle 
letter a vowel. 

The reader can now easily guess the word by himself. 
If nothing else helps, he can try all the vowels, one after 
the other, for the letter in the middle. 

Figures are not only the object of geometric problems 
but also an important help for all sorts of problems in 
which there is nothing geometric at the outset. Thus, we 
have two good reasons to consider the role of figures in 
solving problems. 

1. If our problem is a problem of geometry, we have 
to consider a figure. This figure may be in our imagina­
tion, or it may be traced on paper. On certain occasions, 
it might be desirable to imagine the figure without draw­
ing it; but if we have to examine various details, one 
detail after the other, it is desirable to draw a figure. If 
there are many details, we cannot imagine all of them 
simultaneously, but they are all together on the paper. 
A detail pictured in our imagination may be forgotten; 
but the detail traced on paper remains, and, when we 
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come back to it, it reminds us of our previous remarks, it 
saves us some of the trouble we have in recollecting our 
previous consideration. 

2. We now consider more specially the use of figures in 
problems of geometric construction. 

We start the detailed consideration of such a problem 
by drawing a figure containing the unknown and the 
data, all these elements being assembled as it is pre­
scribed by the condition of the problem. In order to 
understand the problem distinctly, we have to consider 
each datum and each part of the condition separately; 
then we reunite all parts and consider the condition as a 
whole, trying to see simultaneously the various connec­
tions required by the problem. We would scarcely be able 
to handle and separate and recombine all these details 
without a figure on paper. 

On the other hand, before we have solved the problem 
definitively, it remains doubtful whether such a figure 
can be drawn at all. Is it possible to satisfy the whole con­
dition imposed by the problem? We are not entitled to 
say Yes before we have obtained the definitive solution; 
nevertheless we begin with assuming a figure in which 
the unknown is connected with the data as prescribed by 
the condition. It seems that, drawing the figure, we have 
made an unwarranted assumption. 

No, we have not. Not necessarily. We do not act incor­
rectly when, examining our problem, we consider the 
possibility that there is an object that satisfies the con­
dition imposed upon the unknown and has, with all the 
data, the required relations, provided we do not confuse 
mere possibility with certainty. A judge does not act in­
correctly when, questioning the defendant, he considers 
the hypothesis that the defendant perpetrated the crime 
in question, provided he does not commit himself to this 
hypothesis. Both the mathematician and the judge may 
examine a possibility without prejudice, postponing their 
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judgment till the examination yields some definite re­
sult. 

The method of starting the examination of a problem 
of construction by drawing a sketch on which, sup­
posedly, the condition is satisfied, goes back to the Greek 
geometers. It is hinted by the short, somewhat enigmatic 
phrase of Pappus: Assume what is required to be done as 
already done. The following recommendation is some­
what less terse but clearer: Draw a hypothetical figure 
which supposes the condition of the problem satisfied in 
all its parts. 

This is a recommendation for problems of geometric 
construction but in fact there is no need to restrict us to 
any such particular kind of problem. We may extend the 
recommendation to all "problems to find" stating it in 
the following general form: Examine the hypothetical 
situation in which the condition of the problem is sup­
posed to be fully satisfied. 

Compare PAPPUS, 6. 
3· Let us discuss a few points about the actual drawing 

of figures. 
(I) Shall we draw the figures exactly or approxi­

mately, with instruments or free-hand? 
Both kinds of figures have their advantages. Exact 

figures have, in principle, the same role in geometry as 
exact measurements in physics; but, in practice, exact 
figures are less important than exact measurements be­
cause the theorems of geometry are much more exten­
sively verified than the laws of physics. The beginner, 
however, should construct many figures as exactly as he 
can in order to acquire a good experimental basis; and 
exact figures may suggest geometric theorems also to the 
more advanced. Yet, for the purpose of reasoning, care­
fully drawn free-hand figures are usually good enough, 
and they are much more quickly done. Of course, the 
figure should not look absurd; lines supposed to be 
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straight should not be wavy, and so-called circles should 
not look like potatoes. 

An inaccurate figure can occasionally suggest a false 
conclusion, but the danger is not great and we can pro­
tect ourselves from it by various means, especially by 
varying the figure. There is no danger if we concentrate 
upon the logical connections and realize that the figure 
is a help, but by no means the basis of our conclusions; 
the logical connections constitute the real basis. [This 
point is instructively illustrated by certain well known 
paradoxes which exploit cleverly the intentional inac­
curacy of the figure.] 

(II) It is important that the elements are assembled 
in the required relations, it is unimportant in which 
order they are constructed. Therefore, choose the most 
convenient order. For example, to illustrate the idea of 
trisection, you wish to draw two angles, a and [3, so that 
a = 3/3· Starting from an arbitrary a, you cannot con­
struct f3 with ruler and compasses. Therefore, you choose 
a fairly small, but otherwise arbitrary f3 and, starting 
from f3, you construct a which is easy. 

(III) Your figure should not suggest any undue spe­
cialization. The different parts of the figure should not 
exhibit apparent relations not required by the problem. 
Lines should not seem to be equal, or to be perpendicu­
lar, when they are not necessarily so. Triangles should 
not seem to be isosceles, or right-angled, when no such 
property is required by the problem. The triangle having 
the angles 45°, 6o0 , 75° is the one which, in a precise 
sense of the word, is the most "remote" both from the 
isosceles, and from the right-angled shape. 5 You draw 

5 If the angles of a triangle are a, (3, "'' and goo > a > (3 > "'' 
then at least one of the differences goo - a, a - (3, (3- 'Y is < 15°, 
unless a = 75°, (3=6o 0 , "1=45°· In fact, 

3 (goo - a) + 2 (a- fJ) + ((3- 'Y) 0 

6 = 15. 
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this, or a not very different triangle, if you wish to con­
sider a "general" triangle. 

(IV) In order to emphasize the different roles of dif­
ferent lines, you may use heavy and light lines, contin­
uous and dotted lines, or lines in different colors. You 
draw a line very lightly if you are not yet quite decided 
to use it as an auxiliary line. You may draw the given 
elements with red pencil, and use other colors to em­
phasize important parts, as a pair of similar triangles, etc. 

(V) In order to illustrate solid geometry, shall we use 
three-dimensional models, or drawings on paper and 
blackboard? 

Three-dimensional models are desirable, but trouble­
some to make and expensive to buy. Thus, usually, we 
must be satisfied with drawings although it is not easy 
to make them impressive. Some experimentation with 
self-made cardboard models is very desirable for begin­
ners. It is helpful to take objects of our everyday sur­
roundings as representations of geometric notions. Thus, 
a box, a tile, or the classroom may represent a rectangu­
lar parallelepiped, a pencil, a circular cylinder, a lamp­
shade, the frustum of a right circular cone, etc. 

4· Figures traced on paper are easy to produce, easy to 
recognize, easy to remember. Plane figures are especially 
familiar to us, problems about plane figures especially 
accessible. We may take advantage of this circumstance, 
we may use our aptitude for handling figures in handling 
nongeometrical objects if we contrive to find a suitable 
geometrical representation for those nongeometrical 
objects. 

In fact, geometrical representations, graphs and dia­
grams of all sorts, are used in all sciences, not only in 
physics, chemistry, and the natural sciences, but also in 
economics, and even in psychology. Using some suitable 
geometrical representation, we try to express everything 
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in the language of figures, to reduce all sorts of problems 
to problems of geometry. 

Thus, even if your problem is not a problem of geom­
etry, you may try to draw a figure. To find a lucid geo­
metric representation for your nongeometrical problem 
could be an important step toward the solution. 

Generalization is passing from the consideration of one 
object to the consideration of a set containing that ob­
ject; or passing from the consideration of a restricted set 
to that of a more comprehensive set containing the 
restricted one. 

1. If, by some chance, we come across the sum 

1 + 8 + 27 + 64 = 100 

we may observe that it can be expressed in the curious 
form 

13+23+33+43= 102, 

Now, it is natural to ask ourselves: Does it often happen 
that a sum of successive cubes as 

13 + 23 + 3s + · • · + n3 

is a square? In asking this, we generalize. This generaliza­
tion is a lucky one; it leads from one observation to a 
remarkable general law. Many results were found by 
lucky generalizations in mathematics, physics, and the 
natural sciences. See INDUCTION AND MATHEMATICAL IN­

DUCTION. 

2. Generalization may be useful in the solution of 
problems. Consider the following problem of solid geom­
etry: "A straight line and a regular octahedron are given 
in position. Find a plane that passes through the given 
line and bisects the volume of the given octahedron." 
This problem may look difficult but, in fact, very little 
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familiarity with the shape of the regular octahedron is 
sufficient to suggest the following more general problem: 
"A straight line and a solid with a center of symmetry 
are given in position. Find a plane that passes through 
the given line and bisects the volume of the given solid." 
The plane required passes, of course, through the center 
of symmetry of the solid, and is determined by this point 
and the given line. As the octahedron has a center of 
symmetry, our original problem is also solved. 

The reader will not fail to observe that the second 
problem is more general than the first, and, nevertheless, 
much easier than the first. In fact, our main achievement 
in solving the first problem was to invent the second 
problem. Inventing the second problem, we recognize the 
role of the center of symmetry; we disentangled that 
property of the octahedron which is essential for the 
problem at hand, namely that it has such a center. 

The more general problem may be easier to solve. This 
sounds paradoxical but, after the foregoing example, it 
should not be paradoxical to us. The main achievement 
in solving the special problem was to invent the general 
problem. After the main achievement, only a minor part 
of the work remains. Thus, in our case, the solution of 
the general problem is only a minor part of the solution 
of the special problem. 

See INVENTOR's PARADOX. 

3· "Find the volume of the frustum of a pyramid with 
square base, being given that the side of the lower base is 
10 in., the side of the upper base 5 in., and the altitude 
of the frustum 6 in." If for the numbers 10, 5· 6 we sub­
stitute letters, for instance a, b, h, we generalize. We 
obtain a more general problem than the original one, 
namely the following: "Find the volume of the frustum 
of a pyramid with square base, being given that the side 
of the lower base is a, the side of the upper base b, and 
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the altitude of the frustum h." Such generalization may 
be very useful. Passing from a problem "in numbers" to 
another one "in letters" we gain access to new proce­
dures; we can vary the data, and, doing so, we may check 
our results in various ways. See CAN YOU CHECK THE 
RESULT? 2, VARIATION OF THE PROBLEM, 4· 

Have you seen it before? It is possible that we have 
solved before the same problem that we have to do now, 
or that we have heard of it, or that we had a very similar 
problem. These are possibilities which we should not 
fail to explore. We try to remember what happened. 
Have you seen it before? Or have you seen the same prob­
lem in a slightly different form? Even if the answer is 
negative such questions may start the mobilization of 
useful knowledge. 

The question in the title of the present article is often 
used in a more general meaning. In order to obtain the 
solution, we have to extract relevant elements from our 
memory, we have to mobilize the pertinent parts of our 
dormant knowledge (PROGRESS AND ACHIEVEMENT). V\Te 
cannot know, of course, in advance which parts of our 
knowledge may be relevant; but there are certain pos­
sibilities which we should not fail to explore. Thus, any 
feature of the present problem that played a role in the 
solution of some other problem may play again a role. 
Therefore, if any feature of the present problem strikes 
us as possibly important, we try to recognize it. What is 
it? Is it familiar to you? Have you seen it before? 

Here is a problem related to yours and solved before. 
This is good news; a problem for which the solution is 
known and which is connected with our present problem, 
is certainly welcome. It is still more welcome if the con­
nection is close and the solution simple. There is a good 
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chance that such a problem will be useful in solving our 
present one. 

The situation that we are discussing here is typical and 
important. In order to see it clearly let us compare it 
with the situation in which we find ourselves when we 
are working at an auxiliary problem. In both cases, our 
aim is to solve a certain problem A and we introduce and 
consider another problem B in the hope that we may 
derive some profit for the solution of the proposed prob­
lem A from the consideration of that other problem B. 
The difference is in our relation to B. Here, we suc­
ceeded in recollecting an old problem B of which we 
know the solution but we do not know yet how to use it. 
There, we succeeded in inventing a new problem B; we 
know (or at least we suspect strongly) how to use B, but 
we do not know yet how to solve it. Our difficulty con­
cerning B makes all the difference between the two situ­
ations. When this difficulty is overcome, we may use B in 
the same way in both cases; we may use the result or the 
method (as explained in AUXILIARY PROBLEM, 3), and, if 
we are lucky, we may use both the result and the method. 
In the situation considered here, we know well the solu­
tion of B but we do not know yet how to use it. There­
fore, we ask: Could you use it? Could you use its result? 
Could you use its method? 

The intention of using a certain formerly solved prob­
lem influences our conception of the present problem. 
Trying to link up the two problems, the new and the 
old, we introduce into the new problem elements corre­
sponding to certain important elements of the old prob­
lem. For example, our problem is to determine the 
sphere circumscribed about a given tetrahedron. This is 
a problem of solid geometry. We may remember that we 
have solved before the analogous problem of plane 
geometry of constructing the circle circumscribed about 
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a given triangle. Then we recollect that in the old prob­
lem of plane geometry, we used the perpendicular bi­
sectors of the sides of the triangle. It is reasonable to try 
to introduce something analogous into our present prob­
lem. Thus we may be led to introduce into our present 
problem, as corresponding auxiliary elements, the per­
pendicular bisecting planes of the edges of the tetra­
hedron. After this idea, we can easily work out the 
solution to the problem of solid geometry, following the 
analogous solution in plane geometry. 

The foregoing example is typical. The consideration 
of a formerly solved related problem leads us to the 
introduction of auxiliary elements, and the introduction 
of suitable auxiliary elements makes it possible for us to 
use the related problem to full advantage in solving our 
present problem. We aim at such an effect when, think­
ing about the possible use of a formerly solved related 
problem, we ask: Should you introduce some auxiliary 
element in order to make its use possible? 

Here is a theorem related to yours and proved before. 
This version of the remark discussed here is exemplified 
in section 19. 

Heuristic, or heuretic, or "ars inveniendi" was the 
name of a certain branch of study, not very clearly cir­
cumscribed, belonging to logic, or to philosophy, or to 
psychology, often outlined, seldom presented in detail, 
and as good as forgotten today. The aim of heuristic is to 
study the methods and rules of discovery and invention. 
A few traces of such study may be found in the com­
mentators of Euclid; a passage of PAPPUS is particularly 
interesting in this respect. The most famous attempts to 
build up a system of heuristic are due to DESCARTES and 
to LEIBNITZ, both great mathematicians and philosophers. 
Bernard BOLZANO presented a notable detailed account of 
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heuristic. The present booklet is an attempt to revive 
heuristic in a modern and modest form. See MODERN 

HEURISTIC. 

Heuristic, as an adjective, means "serving to discover." 

Heuristic reasoning is reasoning not regarded as final 
and strict but as provisional and plausible only, whose 
purpose is to discover the solution of the present prob­
lem. We are often obliged to use heuristic reasoning. We 
shall attain complete certainty when we shall have ob­
tained the complete solution, but before obtaining cer­
tainty we must often be satisfied with a more or less 
plausible guess. We may need the provisional before 
we attain the final. We need heuristic reasoning when we 
construct a strict proof as we need scaffolding when we 
erect a building. 

See SIGNS oF PROGREss. Heuristic reasoning is often 
based on induction, or on analogy; see INDUCTION AND 

MATHEMATICAL INDUCTION, and ANALOGY, 8, g, 10.6 

Heuristic reasoning is good in itself. What is bad is 
to mix up heuristic reasoning with rigorous proof. 
What is worse is to sell heuristic reasoning for rigorous 
proof. 

The teaching of certain subjects, especially the teach­
ing of calculus to engineers and physicists, could be essen­
tially improved if the nature of heuristic reasoning were 
better understood, both its advantages and its limitations 
openly recognized, and if the textbooks would present 
heuristic arguments openly. A heuristic argument pre­
sented with taste and frankness may be useful; it may 
prepare for the rigorous argument of which it usually 
contains certain germs. But a heuristic argument is likely 
to be harmful if it is presented ambiguously with visible 

6 See also a paper hy the author in American l\fathematical 
Monthly, vol. 48, pp. 450-465. 
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hesitation between shame and pretension. See WHY 

PROOFS? 

If you cannot solve the proposed problem do not let 
this failure afflict you too much but try to find consola­
tion with some easier success, try to solve first some re­
lated problem; then you may find courage to attack your 
original problem again. Do n-.>t forget that human superi­
ority consists in going around an obstacle that cannot be 
overcome directly, in devising some suitable auxiliary 
problem when the original one appears insoluble. 

Could you imagine a more accessible related problem? 
You should now invent a related problem, not merely 
remember one; I hope that you have tried already the 
question: Do you know a related problem? 

The remaining questions in that paragraph of the list 
which starts with the title of the present article have a 
common aim, the VARIATION OF THE PROBLEM. There are 
different means to attain this aim as GENERALIZATION, 

SPECIALIZATION, ANALOGY, and others which are variOUS 
ways of DECOMPOSING AND RECOMBINING. 

Induction and mathematical induction. Induction is 
the process of discovering general laws by the observation 
and combination of particular instances. It is used in all 
sciences, even in mathematics. Mathematical induction 
is used in mathematics alone to prove theorems of a 
certain kind. It is rather unfortunate that the names are 
connected because there is very little logical connection 
between the two processes. There is, however, some prac­
tical connection; we often use both methods together. 
We are going to illustrate both methods by the same 
example. 

1. We may observe, by chance, that 

1 + 8 + 27 + 64 = 100 
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and, recognizing the cubes and the square, we may give 
to the fact we observed the more interesting form: 

13 + 23 + 33 + 43 = 102. 

How does such a thing happen? Does it often happen 
that such a sum of successive cubes is a square? 

In asking this we are like the naturalist who, impressed 
by a curious plant or a curious geological formation, con­
ceives a general question. Our general question is con­
cerned with the sum of successive cubes 

I3+23 +33+···+n3. 

We were led to it by the "particular instance" n = 4· 
'What can we do for our question? What the naturalist 

would do; we can investigate other special cases. The 
special cases n = 2, 3 are still simpler, the case n = 5 is 
the next one. Let us add, for the sake of uniformity and 
completeness, the case n = 1. Arranging neatly all these 
cases, as a geologist would arrange his specimens of a 
certain ore, we obtain the following table: 

1 1 = 12 

I+ 8 9 = 32 
I + 8 + 27 36 = 62 
1 + 8 + 27 + 64 = 100 = 102 

1 + 8 + 2 7 + 64 + 12 5 = 2 2 5 = I5 2. 

It is hard to believe that all these sums of consecutive 
cubes are squares by mere chance. In a similar case, the 
naturalist would have little doubt that the general law 
suggested by the special cases heretofore observed is cor­
rect; the general law is almost proved by induction. The 
mathematician expresses himself with more reserve al­
though fundamentally, of course, he thinks in the same 
fashion. He would say that the following theorem IS 

strongly suggested by induction: 

The sum of the first n cubes is a square. 
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2. We have been led to conjecture a remarkable, some­
what mysterious law. Why should those sums of succes­
sive cubes be squares? But, apparently, they are squares. 

What would the naturalist do in such a situation? He 
would go on examining his conjecture. In so doing, he 
may follow various lines of investigation. The naturalist 
may accumulate further experimental evidence; if we 
wish to do the same, we have to test the next cases, 
n = 6, 7, .... The naturalist may also reexamine the 
facts whose observation has led him to his conjecture; 
he compares them carefully, he tries to disentangle some 
deeper regularity, some further analogy. Let us follow 
this line of investigation. 

Let us reexamine the cases n =I, 2, 3, 4, 5 which we 
arranged in our table. Why are all these sums squares? 
What can we say about these squares? Their bases are I, 

3, 6, 10, I5· What about these bases? Is there some deeper 
regularity, some further analogy? At any rate, they do not 
seem to increase too irregularly. How do they increase? 
The difference between two successive terms of this se­
quence is itself increasing, 

3- I = 2, 6- 3 = 3, 10- 6 = 4, I5- 10 = 5· 

Now these differences are conspicuously regular. \Ve may 
see here a surprising analogy between the bases of those 
squares, we may see a remarkable regularity in the num­
bers 1, 3, 6, 10, 15: 

I = I 

3 =I+ 2 
6 =I+ 2 + 3 

IO = 1+ 2 + 3 + 4 
15 = 1+ 2 + 3 + 4 + 5· 

If this regularity is general (and the contrary is hard to 
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believe) the theorem we suspected takes a more precise 
form: 

It is, for n = 1, 2, 3, ... 

3· The law we just stated was found by induction, and 
the manner in which it was found conveys to us an idea 
about induction which is necessarily one-sided and im­
perfect but not distorted. Induction tries to find regular­
ity and coherence behind the observations. Its most con­
spicuous instruments are generalization, specialization, 
analogy. Tentative generalization starts from an effort to 
understand the observed facts; it is based on analogy, and 
tested by further special cases. 

We refrain from further remarks on the subject of 
induction about which there is wide disagreement among 
philosophers. But it should be added that many mathe­
matical results were found by induction first and proved 
later. Mathematics presented with rigor is a systematic 
deductive science but mathematics in the making is an 
experimental inductive science. 

4· In mathematics as in the physical sciences we may 
use observation and induction to discover general laws. 
But there is a difference. In the physical sciences, there is 
no higher authority than observation and induction but 
in mathematics there is such an authority: rigorous 
proof. 

After having worked a while experimentally it may be 
good to change our point of view. Let us be strict. We 
have discovered an interesting result but the reasoning 
that led to it was merely plausible, experimental, pro­
visional, heuristic; let us try to establish it definitively by 
a rigorous proof. 

We have arrived now at a "problem to prove": to 
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prove or to disprove the result stated before (see 2, 

above). 
There is a minor simplification. We may know that 

n(n + I) I+2+3+···+n= · 
2 

At any rate, this is easy to verify. Take a rectangle with 
sides n and n + 1, and divide it in two halves by a zigzag 
line as in Fig. 15a which shows the case n = 4· Each of 
the halves is "staircase-shaped" and its area has the ex­
pression 1 + 2 + · · · + n; for n = 4 it is 1 + 2 + 3 + 4, 
see Fig. 18b. Now, the whole area of the rectangle is 
n(n + 1) of which the staircase-shaped area is one half; 
this proves the formula. 

0 b 
FIG. 18 

vVe may transform the result which we found by m­
duction into 

I3 + 23 + 33 + ... + n3 = (n(n; I)y 

5· If we have no idea how to prove this result, we may 
at least test it. Let us test the first case we have not 
tested yet, the case n = 6. For this value, the formula 
yields 

I + 8 + 27 + 64 + 125 + 2I6 = (6 ~ 7y 
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and, on computation, this turns out to be true, both 
sides being equal to 441. 

·we can test the formula more effectively. The formula 
is, very likely, generally true, true for all values of n. 
Does it remain true when we pass from any value n to 
the next value n + 1? Along with the formula as written 
above (p. 1 18) we should also have 

Now, there is a simple check. Subtracting from this the 
formula written above, we obtain 

(n + 1)3 = ((n + r)2(n + 2)y _ (n(n-:- r)y. 

This is, however, easy to check. The right hand side may 
be written as 

c ~ ry [(n + 2)2 - nZ] = (n ~ ry [n2 + 4n + 4 - nZ] 

( n + I) 2 ( 4n + 4) = ( n + I ) 2 ( n + I) = ( n + I) 3. 
4 

Our experimentally found formula passed a vital test. 
Let us see clearly what this test means. We verified 

beyond doubt that 

(n + I)3 = en+ I)2(n + 2)y- (n(n ;- I)y. 
We do not know yet whether 

3 + 3 + 3 + + 3 - (n (n + I) )z 1 2 3 · · n -
2 

is true. But if we knew that this was true we could infer, 
by adding the equation which we verified beyond doubt, 
that 

3 + 3 + 3 + + 3 + ( + )3 ((n + r)(n + 2))2 
I 2 3 ... n n r = 

2 
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is also true which is the same assertion for the next 
integer n + 1. Now, we actually know that our conjec­
ture is true for n = 1, 2, 3, 4, 5· 6. By virtue of what we 
have just said, the conjecture, being true for n = 6, must 
also be true for n = 7; being true for n = 7 it is true for 
n = 8; being true for n = 8 it is true for n = g; and so 
on. It holds for all n, it is proved to be true generally. 

6. The foregoing proof may serve as a pattern in many 
similar cases. What are the essential lines of this pattern? 

The assertion we have to prove must be given in ad­
vance, in precise form. 

The assertion must depend on an integer n. 
The assertion must be sufficiently "explicit" so that we 

have some possibility of testing whether it remains true 
in the passage from n to the next integer n + 1. 

If we succeed in testing this effectively, we may be able 
to use our experience, gained in the process of testing, to 
conclude that the assertion must be true for n + 1 pro­
vided it is true for n. When we are so far it is sufficient to 
know that the assertion is true for n = 1; hence it follows 
for n =2; hence it follows for n = 3· and so on; passing 
from any integer to the next, we prove the assertion 
generally. 

This process is so often used that it deserves a name. 
We could call it "proof from n ton+ 1" or still simpler 
''passage to the next integer." Unfortunately, the ac­
cepted technical term is "mathematical induction." This 
name results from a random circumstance. The precise 
assertion that we have to prove may come from any 
source, and it is immaterial from the logical viewpoint 
what the source is. Now, in many cases, as in the case we 
discussed here in detail, the source is induction, the asser­
tion is found experimentally, and so the proof appears 
as a mathematical complement to induction; this ex­
plains the name. 
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7· Here is another point, somewhat subtle, but impor­
tant to anybody who desires to find proofs by himself. 
In the foregoing, we found two different assertions by 
observation and induction, one after the other, the first 
under 1, the second under 2; the second was more pre­
cise than the first. Dealing with the second assertion, we 
found a possibility of checking the passage from n to 
n + 1, and so we were able to find a proof by "mathemat­
ical induction." Dealing with the first assertion, and 
ignoring the precision added to it by the second one, we 
should scarcely have been able to find such a proof. In 
fact, the first assertion is less precise, less "explicit," less 
"tangible," less accessible to testing and checking than 
the second one. Passing from the first to the second, from 
the less precise to the more precise statement, was an 
important preparative for the final proof. 

This circumstance has a paradoxical aspect. The 
second assertion is stronger; it implies immediately the 
first, whereas the somewhat "hazy" first assertion can 
hardly imply the more "clear-cut" second one. Thus, the 
stronger theorem is easier to master than the weaker 
one; this is the INVENTOR'S PARADOX. 

Inventor's paradox. The more ambitious plan may 
have more chances of success. 

This sounds paradoxical. Yet, when passing from one 
problem to another, we may often observe that the new, 
more ambitious problem is easier to handle than the 
original problem. More questions may be easier to an­
swer than just one question. The more comprehensive 
theorem may be easier to prove, the more general prob­
lem may be easier to solve. 

The paradox disappears if we look closer at a few 
examples (GENERALIZATION, 2; INDUCTION AND MATHEMAT­

ICAL INDUCTION, 7)· The more ambitious plan may have 
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more chances of success provided it is not based on mere 
pretension but on some vision of the things beyond those 
immediately present. 

Is it possible to satisfy the condition? Is the condition 
sufficient to determine the unknown? Or is it insufficient? 
Or redundant? Or contradictory? 

These questions are often useful at an early stage when 
they do not need a final answer but just a provisional 
answer, a guess. For examples, see sections 8, 18. 

It is good to foresee any feature of the result for which 
we work. When we have some idea of what we can ex­
pect, we know better in which direction we should go. 
Now, an important feature of a problem is the number 
of solutions of which it admits. Most interesting among 
problems are those which admit of just one solution; we 
are inclined to consider problems with a uniquely deter­
mined solution as the only "reasonable" problems. Is our 
problem, in this sense, "reasonable"? If we can answer 
this question, even by a plausible guess, our interest in 
the problem increases and we can work better. 

Is our problem "reasonable"? This question is useful 
at an early stage of our work if we can answer it easily. 
If the answer is difficult to obtain, the trouble we have 
in obtaining it may outweigh the gain in interest. The 
same is true of the question "Is it possible to satisfy the 
condition?" and the allied questions of our list. We 
should put them because the answer might be easy and 
plausible, but we should not insist on them when the 
answer seems to be difficult or obscure. 

The corresponding questions for "problems to prove" 
are: Is it likely that the proposition is true? Or is it more 
likely that it is false? The way the question is put shows 
clearly that only a guess, a plausible provisional answer, 
is expected. 
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Leibnitz, Gottfried Wilhelm (1646-1716), great mathe­
matician and philosopher, planned to write an "Art of 
Invention" but he never carried through his plan. Nu­
merous fragments dispersed in his works show, how­
ever, that he entertained interesting ideas about the 
subject whose importance he often emphasized. Thus, 
he wrote: "Nothing is more important than to see the 
sources of invention which are, in my opinion, more 
interesting than the inventions themselves." 

Lemma means "auxiliary theorem." The word is of 
Greek origin; a more literal translation would be "what 
is assumed." 

We are trying to prove a theorem, say, A. We are led to 
suspect another theorem, say, B; if B were true we could 
perhaps, using it, prove A. We assume B provisionally, 
postponing its proof, and go ahead with the proof of A. 
Such a theorem B is assumed, and is an auxiliary theorem 
to the originally proposed theorem A. Our little story 
is fairly typical and explains the present meaning of the 
word "lemma." 

Look at the unknown. This is old advice; the corre­
sponding Latin saying is: "respice finem." That is, look 
at the end. Remember your aim. Do not forget your goal. 
Think of what you are desiring to obtain. Do not lose 
sight of what is required. Keep in mind what you are 
working for. Look at the unknown. Look at the conclu­
sion. The last two versions of "respice finem" are spe­
cifically adapted to mathematical problems, to "problems 
to find" and to "problems to prove" respectively. 

Focusing our attention on our aim and concentrating 
our will on our purpose, we think of ways and means to 
attain it. What are the means to this end? How can you 
attain your aim? How can you obtain a result of this 
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kind? What causes could produce such a result? Where 
have you seen such a result produced? What do people 
usually do to obtain such a result? And try to think of a 
familiar problem having the same or a similar unknown. 
And try to think of a familiar theorem having the same 
or a similar conclusion. Again, the last two versions are 
specifically adapted to "problems to find" and to "prob­
lems to prove" respectively. 

1. We are going to consider mathematical problems, 
"problems to find," and the suggestion: Try to think of a 
familiar problem having the same unknown. Let us com­
pare this suggestion with that involved in the question: 
Do you know a related problem? 

The latter suggestion is more general than the former 
one. If a problem is related to another problem, the two 
have something in common; they may involve a few com­
mon objects or notions, or have some data in common, or 
some part of the condition, and so on. Our first sugges­
tion insists on a particular common point: The two 
problems should have the same unknown. That is, the 
unknown should be in both cases an object of the same 
category, for instance, in both cases the length of a 
straight line. 

In comparison with the general suggestion, there is a 
certain economy in the special suggestion. 

First, we may save some effort in representing the prob­
lem; we must not look at once at the whole problem but 
just at the unknown. The problem appears to us schemat­
ically, as 

"Given .......... find the length of the line." 

Second, there is a certain economy of choice. Many, 
many problems may be related to the proposed problem, 
having some point or other in common with it. But, 
looking at the unknown, we restrict our choice; we take 
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into consideration only such problems as have the same 
unknown. And, of course, among the problems having 
the same unknown, we consider first those which are the 
most elementary and the most familiar to us. 

2. The problem before us has the form: 

"Given .......... find the length of the line." 

Now the simplest and most familiar problems of this 
kind are concerned with triangles: Given three constit­
uent parts of a triangle find the length of a side. Re­
membering this, we have found something that may be 
relevant: Here is a problem related to yours and solved 
before. Could you use it? Could )'OU use its result? In 
order to use the familiar results about triangles, we must 
have a triangle in our figure. Is there a triangle? Or 
should we introduce one in order to profit from those 
familiar results? Should you introduce some auxiliary 
element in order to make their use possible? 

There are several simple problems whose unknown is 
the side of a triangle. (They differ from each other in the 
data; two angles may be given and one side, or two sides 
and one angle, and the position of the angle with respect 
to the given sides may be different. Then, all these prob­
lems are particularly simple for right triangles.) With 
our attention riveted upon the problem before us, we try 
to find out which kind of triangle we should introduce, 
which formerly solved problem (with the same unknown 
as that before us) we could most conveniently adapt to 
our present purpose. 

Having introduced a suitable auxiliary triangle, it may 
happen that we do not know yet three constituent parts 
of it. This, however, is not absolutely necessary; if we 
foresee that the missing parts can be obtained somehow 
we have made essential progress, we have a plan of the 
solution. 
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3· The procedure sketched in the foregoing (under 1 

and 2) is illustrated, essentially, by section 10 (the illus­
tration is somewhat obscured by the slowness of the 
students) . It is not difficult at all to add many similar 
examples. In fact, the solution of almost all "problems 
to find" usually proposed in less advanced classes can be 
started by proper use of the suggestion: And try to think 
of a familiar problem having the same or a similar un­
known. 

We must take such problems schematically, and look 
at the unknown first: 

( 1) Given ....... find the length of the line. 
(2) Given ....... find the angle. 
(3) Given ....... find the volume of the tetrahedron. 
(4) Given ....... construct the point. 

If we have some experience in dealing with elementary 
mathematical problems, we will readily recall some sim­
ple and familiar problem or problems having the same 
unknown. If the problem proposed is not one of those 
simple familiar problems we naturally try to make use of 
what is familiar to us and profit from the result of those 
simple problems. We try to introduce some useful well­
known thing into the problem, and doing so we may get 
a good start. 

In each of the four cases mentioned there is an obvious 
plan, a plausible guess about the future course of the 
solution. 

( 1) The unknown should be obtained as a side of 
some triangle. It remains to introduce a suitable triangle 
with three known, or easily obtainable, constituents. 

(2) The unknown should be obtained as an angle in 
some triangle. It remains to introduce a suitable triangle. 

(3) The unknown can be obtained if the area of the 
base and the length of the altitude are known. It re-
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mains to find the area of a face and the corresponding 
altitude. 

(4) The unknown should be obtained as the intersec­
tion of two loci each of which is either a circle or a 
straight line. It remains to disentangle such loci from the 
proposed condition. 

In all these cases the plan is suggested by a simple 
problem with the same unknown and by the desire to 
use its result or its method. Pursuing such a plan, we may 
run into difficulties, of course, but we have some idea to 
start with which is a great advantage. 

4· There is no such advantage if there is no formerly 
solved problem having the same unknown as the pro­
posed problem. In such cases, it is much more difficult to 
tackle the proposed problem. 

"Find the area of the surface of a sphere with given 
radius." This problem was solved by Archimedes. There 
is scarcely a simpler problem with the same unknown 
and there was certainly no such simpler problem of which 
Archimedes could have made use. In fact, Archimedes' 
solution may be regarded as one of the most notable 
mathematical achievements. 

"Find the area of the surface of the sphere inscribed 
in a tetrahedron whose six edges are given." If we know 
Archimedes' result, we need not have Archimedes' genius 
to solve the problem; it remains to express the radius 
of the inscribed sphere in terms of the six edges of the 
tetrahedron. This is not exactly easy but the difficulty 
cannot be compared with that of Archimedes' problem. 

To know or not to know a formerly solved problem 
with the same unknown may make all the difference be­
tween an easy and a difficult problem. 

5· When Archimedes found the area of the surface of 
the sphere he did not know, as we just mentioned, any 
formerly solved problem having the same unknown. But 



Look at the Unknown 

he knew various formerly solved problems having a simi­
lar unknown. There are curved surfaces whose area is 
easier to obtain than that of the sphere and which were 
well known in Archimedes' time, as the lateral surfaces 
of right circular cylinders, of right circular cones, and of 
the frustums of such cones. We may be certain that 
Archimedes considered carefully these simpler similar 
cases. In fact, in his solution, he uses as approximation 
to the sphere a composite solid consisting of two cones 
and several frustums of cones (see DEFINITION, 6). 

If we are unable to find a formerly solved problem 
having the same unknown as the problem before us, we 
try to find one having a similar unknown. Problems of 
the latter kind are less closely related to the problem be­
fore us than problems of the former kind and, therefore, 
less easy to use for our purpose in general but they may 
be valuable guides nevertheless. 

6. We add a few remarks concerning "problems to 
prove"; they are analogous to the foregoing more exten­
sive comments on "problems to find." 

We have to prove (or disprove) a clearly stated theo­
rem. Any theorem proved in the past which is in some 
way related to the theorem before us has a chance to be 
of some service. Yet we may expect the most immediate 
service of theorems which have the same conclusion as the 
one before us. Knowing this, we look at the conclusion, 
that is, we consider our theorem emphasizing the conclu­
sion. Our way of looking at the theorem can be expressed 
in writing by a scheme as: 

"If .......... then the angles are equal." 

We focus our attention upon the conclusion before us 
and try to think of a familiar theorem having the same 
or a similar conclusion. Especially, we try to think of very 
simple familiar theorems of this sort. 
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In our case, there are various theorems of this kind and 
we may recollect the following: "If two triangles are con­
gruent the corresponding angles are equal." Here is a 
theorem related to yours and proved before. Could you 
use it? Should you introduce some auxiliary element in 
order to make its use possible? 

Following these suggestions, and trying to judge the 
help afforded by the theorem we recollected, we may con­
ceive a plan: Let us try to prove the equality of the 
angles in question from congruent triangles. We see that 
we must introduce a pair of triangles containing those 
angles and prove that they are congruent. Such a plan is 
certainly good to start the work and it may lead eventu­
ally to the desired end as in section 19. 

7. Let us sum up. Recollecting formerly solved prob­
lems with the same or a similar unknown (formerly 
proved theorems with the same or a similar conclusion) 
we have a good chance to start in the right direction and 
we may conceive a plan of the solution. In ~imple cases, 
which are the most frequent in less advanced classes, the 
most elementary problems with the same unknown (the­
orems with the same conclusion) are usually sufficient. 
Trying to recollect problems with the same unknown is 
an obvious and common-sense device (compare what was 
said in this respect in section 4) . It is rather surprising 
that such a simple and useful device is not more widely 
known; the author is inclined to think that it was not 
even stated before in full generality. In any case, neither 
students nor teachers of mathematics can afford to ignore 
the proper use of the suggestion: Look at the unknown! 
And try to think of a familiar problem having the same 
or a similar unknown. 

Modern heuristic endeavors to understand the process 
of solving problems, especially the mental operations 
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typically useful in this process. It has various sources of 
information none of which should be neglected. A seri­
ous study of heuristic should take into account both the 
logical and the psychological background, it should not 
neglect what such older writers as Pappus, Descartes, 
Leibnitz, and Bolzano have to say about the subject, but 
it should least neglect unbiased experience. Experience in 
solving problems and experience in watching other peo­
ple solving problems must be the basis on which heuristic 
is built. In this study, we should not neglect any sort of 
problem, and should find out common features in the 
way of handling all sorts of problems; we should aim at 
general features, independent of the subject matter of 
the problem. The study of heuristic has "practical" aims; 
a better understanding of the mental operations typically 
useful in solving problems could exert some good influ­
ence on teaching, especially on the teaching of mathe­
matics. 

The present book is a first attempt toward the realiza­
tion of this program. We are going to discuss how the 
various articles of this Dictionary fit into the program. 

1. Our list is, in fact, a list of mental operations typi­
cally useful in solving problems; the questions and sug­
gestions listed hint at such operations. Some of these 
operations are described again in the Second Part, and 
some of them are more thoroughly discussed and illus­
trated in the First Part. 

For additional information about particular questions 
and suggestions of the list, the reader should refer to 
those fifteen articles of the Dictionary whose titles are 
the first sentences of the fifteen paragraphs of the list: 
WHAT IS THE UNKNOWN? IS IT POSSIBLE TO SATISFY THE 

CONDITION? DRAW A FIGURE .... CAN YOU USE THE RESULT? 

The reader, wishing information about a particular item 
of the list, should look at the first words of the para-
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graph in which the item is contained and then look up 
the article in the Dictionary that has those first words as 
title. For instance, the suggestion "Go back to defini­
tions" is contained in the paragraph of the list whose first 
sentence is: COULD YOU RESTATE THE PROBLEM? Under this 
title, the reader finds a cross-reference to DEFINITION in 
which article the suggestion in question is explained and 
ill us tra ted. 

2. The process of solving problems is a complex proc­
ess that has several different aspects. The twelve principal 
articles of this Dictionary study certain of these aspects 
at some length; we are going to mention their titles in 
what follows. 

When we are working intensively, we feel keenly the 
progress of our work; we are elated when our progress 
is rapid, we are depressed when it is slow. What is essen­
tial tO PROGRESS AND ACHIEVEMENT in solving problems? 
The article discussing this question is often quoted in 
other parts of the Dictionary and should be read fairly 
early. 

Trying to solve a problem, we consider different as­
pects of it in turn, we roll it over and over incessantly in 
our mind; VARIATION OF THE PROBLEM is essential to our 
work. We may vary the problem by DECOMPOSING AND 
RECOMBINING its elements, or by going back to the DEFINI­
TION of certain of its terms, or we may use the great 
resources of GENERALIZATION, SPECIALIZATION, and ANAL­
OGY. Variation of the problem may lead us to AUXILIARY 
ELEMENTS, or to the discovery of a more accessible AUX­
ILIARY PROBLEM. 

We have to distinguish carefully between two kinds of 
problems, PROBLEMS TO FIND, PROBLEMS TO PROVE. Our 
list is specially adapted to "problems to find." We have 
to revise it and change some of its questions and sugges­
tions in order to apply it also to "problems to prove." 
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In all sorts of problems, but especially in mathematical 
problems which are not too simple, suitable NOTATION 
and geometrical FIGURES are a great and often indispen­
sable help. 

3· The process of solving problems has many aspects 
but some of them are not considered at all in this book 
and others only very briefly. It is justified, I think, to 
exclude from a first short exposition points which could 
appear too subtle, or too technical, or too controversial. 

Provisional, merely plausible HEURISTIC REASONING is 
important in discovering the solution, but you should not 
take it for a proof; you must guess, but also EXAMINE 
YOUR GUESS. The nature of heuristic arguments is dis­
cussed in siGNS OF PROGREss, but the discussion could go 
further. 

The consideration of certain logical patterns is impor­
tant in our subject but it appeared advisable not to 
introduce any technical article. There are only two arti­
cles predominantly devoted to psychological aspects, on 
DETERMINATION, HOPE, SUCCESS, and on SUBCONSCIENT 
WORK. There is an incidental remark on animal psy­
chology; see WORKING BACKWARDS. 

It is emphasized that all sorts of problems, especially 
PRACTICAL PROBLEMS, and even PUZZLES, are within the 
scope of heuristic. It is also emphasized that infallible 
RULES OF DISCOVERY are beyond the scope of serious re­
search. Heuristic discusses human behavior in the face 
of problems; this has been in fashion, presumably, since 
the beginning of human society, and the quintessence of 
such ancient discussions seems to be preserved in the 
WISDOM OF PROVERBS. 

4· A few articles on particular questions are included 
and some articles on more general aspects are expanded, 
because they could be, or parts of them could be, of 
special interest to students or teachers. 
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There are articles discussing methodical questions 
often important in elementary mathematics, as PAPPUS, 

WORKING BACKWARDS (already quoted under 3), REDUCTIO 

AD ABSURDUM AND INDIRECT PROOF, INDUCTION AND MATHE­

MATICAL INDUCTION, SETTING UP EQUATIONS, TEST BY DI­

MENSION, and WHY PROOFS? A few articles address them­
selves more particularly to teachers, as ROUTINE PROBLEMS 

and DIAGNOSIS, and others to students somewhat more 
ambitious than the average, as THE INTELLIGENT PROBLEM­

SOLVER, THE INTELLIGENT READER, and THE FUTURE MATHE­

MATICIAN. 

It may be mentioned here that the dialogues between 
the teacher and his students, given in sections 8, 10, 18, 
19, 20 and in various articles of the Dictionary may serve 
as models not only to the teacher who tries to guide his 
class but also to the problem-solver who works by h im­
self. T o describe thinking as "mental discourse," as a sort 
of conversation of the thinker with himself, is not inap­
propriate. The dialogues in question show the progress 
of the solution; the problem-solver, talking with himself, 
may progress along a similar line. 

5· We are not going to exhaust the remaining titles; 
just a few groups will be mentioned. 

Some articles contain remarks on the history of our 
subject, on DESCARTES, LEIBNITZ, BOLZANO, on HEURISTIC, 

on TERMS, OLD AND NEW and on PAPPUS (this }ast one has 
been quoted already under 4) . 

A few articles explain technical terms: coNDITION, 

COROLLARY, LEMMA. 

Some articles contain only cross-references (they are 
marked with daggers [t] in the Table of Contents). 

6. Heuristic aims at generality, at the study of pro­
cedures which are independent of the subject-matter and 
apply to all sorts of problems. The present expositiOn, 
however, quotes almost exclusively elementary mathe-
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matical problems as examples. It should not be over­
looked that this is a restriction but it is hoped that this 
restriction does not impair seriously the trend of our 
study. In fact, elementary mathematical problems pre­
sent all the desirable variety, and the study of their solu­
tion is particularly accessible and interesting. Moreover, 
nonmathematical problems although seldom quoted as 
examples are never completely forgotten. More advanced 
mathematical problems are never directly quoted but 
constitute the real background of the present exposition. 
The expert mathematician who has some interest for this 
sort of study can easily add examples from his own ex­
perience to elucidate the points illustrated by elementary 
examples here. 

7· The writer of this book wishes to acknowledge his 
indebtedness and express his gratitude to a few modern 
authors, not quoted in the article on H EURISTIC. They are 
the physicist and philosopher Ernst Mach, the mathema­
tician Jacques Hadamard, the psychologists William 
James and Wolfgang Kohler. He wishes also to quote 
the psychologist K. Duncker and the mathematician F. 
Krauss whose work (published after his own research 
was fairly advanced, and partly published) shows certain 
parallel remarks. 

Notation. If you wish to realize the advantages of a 
well chosen and well known notation try to add a few 
not too small numbers with the condition that you are 
not allowed to use the familiar Arabic numerals, al­
though you may use, if you wish to write, Roman nu­
merals. Take, for instance, the numbers MMMXC, MDXCVI, 

MDCXLVI, MDCCLXXXI, MDCCCLXXXVII. 

We can scarcely overestimate the importance of mathe­
matical notation. Modern computers, using the decimal 
notation, have a great advantage over the ancient com-
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puters who did not have such a convenient manner of 
writing the numbers. An average modern student who is 
familiar with the usual notation of algebra, analytical 
geometry, and the differential and integral calculus, has 
an immense advantage over a Greek mathematician in 
solving the problems about areas and volumes which 
exercised the genius of Archimedes. 

1. Speaking and thinking are closely connected, the 
use of words assists the mind. Certain philosophers and 
philologists went a little further and asserted that the use 
of words is indispensable to the use of reason. 

Yet this last assertion appears somewhat exaggerated. 
If we have a little experience of serious mathematical 
work we know that we can do a piece of pretty hard 
thinking without using any words, just looking at geo­
metric figures or manipulating algebraic symbols. Figures 
and symbols are closely connected with mathematical 
thinking, their use assists the mind. We could improve 
that somewhat narrow assertion of philosophers and 
philologists by bringing the words into line with other 
sorts of signs and saying that the use of signs appears to 
be indispensable to the use of reason. 

At any rate, the use of mathematical symbols is similar 
to the use of words. Mathematical notation appears as a 
sort of language, une langue bien faite, a language well 
adapted to its purpose, concise and precise, with rules 
which, unlike the rules of ordinary grammar, suffer no 
exception. 

If we accept this viewpoint, SETTING UP EQUATIONS 

appears as a sort of translation, translation from ordinary 
language into the language of mathematical symbols. 

2. Some mathematical symbols, as+,-,=, and several 
others, have a fixed traditional meaning, but other sym­
bols, as the small and capital letters of the Roman and 
Greek alphabets, are used in different meanings in dif-
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ferent problems. When we face a new problem, we must 
choose certain symbols, we have to introduce suitable 
notation. There is something analogous in the use of 
ordinary language. Many words are used in different 
meanings in different contexts; when precision is impor­
tant, we have to choose our words carefully. 

An important step in solving a problem is to choose 
the notation. It should be done carefully. The time we 
spend now on choosing the notation may be well repaid 
by the time we save later by avoiding hesitation and con­
fusion. Moreover, choosing the notation carefully, we 
have to think sharply of the elements of the problem 
which must be denoted. Thus, choosing a suitable nota­
tion may contribute essentially to understanding the 
problem. 

3· A good notation should be unambiguous, pregnant, 
easy to remember; it should avoid harmful second mean­
ings, and take advantage of useful second meanings; the 
order and connection of signs should suggest the order 
and connection of things. 

4· Signs must be, first of all, unambiguous. It is inad­
missible that the same symbol denote two different ob­
jects in the same inquiry. If, solving a problem, you call 
a certain magnitude a you should avoid calling anything 
else a which is connected with the same problem. Of 
course, you may use the letter a in a different meaning 
in a different problem. 

Although it is forbidden to use the same symbol for 
different objects it is not forbidden to use different sym­
bols for the same object. Thus, the product of a and b 
may be written as 

axb a·b a b. 

In some cases, it is advantageous to use two or more dif­
ferent signs for the same object, but such cases require 
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particular care. Usually, it is better to use just one sign 
for one object, and in no case should several signs be used 
wantonly. 

5· A good sign should be easy to remember and easy to 
recognize; the sign should immediately remind us of the 
object and the object of the sign. 

A simple device to make signs easily recognizable is to 
use initials as symbols. For example, in section 20 we used 
r for rate, t for time, V for volume. We cannot use, how­
ever, initials in all cases. Thus, in section 20, we had to 
consider a radius but we could not call it r because this 
letter was already taken to denote a rate. There are still 
other motives restricting the choice of symbols, and other 
means to make them easily recognizable which we are 
going to discuss. 

6. Notation is not only easily recognizable but par­
ticularly helpful in shaping our conception when the 
order and connection of the signs suggest the order and 
connection of the objects. We need several examples to 
illustrate this point. 

(I) In order to denote objects which are near to each 
other in the conception of the problem we use letters 
which are near to each other in the alphabet. 

Thus, we generally use letters at the beginning of the 
alphabet as a, b, c, for given quantities or constants, and 
letters at the end of the alphabet as x, y, z, for unknown 
quantities or variables. 

In section 8 we used a, b, c for the given length, width, 
and height of a parallelepiped. On this occasion, the nota­
tion a, b, c was preferable to the notation by initials l, w, 
h. The three lengths played the same role in the problem 
which is emphasized by the use of successive letters. 
Moreover, being at the beginning of the alphabet, a, b, c 
are, as we just said, the most usual letters to denote given 
quantities. On some other occasion, if the three lengths 
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play different roles and it is important to know which 
lengths are horizontal and which one is vertical, the 
notation l, w, h might be preferable. 

(II) In order to denote objects belonging to the same 
category, we frequently choose letters belonging to the 
same alphabet for one category, using different alphabets 
for different categories. Thus, in plane geometry we often 
use: 

Roman capitals as A, B, C, ... for points, 
small Roman letters as a, b, c, . .. for lines, 
small Greek letters as ex, (3, y, ... for angles. 

If there are two objects belonging to different cate­
gories but having some particular relation to each other 
which is important for our problem, we may choose, to 
denote these two objects, corresponding letters of the 
respective alphabets as A and a, B and b, and so on. A 
familiar example is the usual notation for a triangle: 

A, B, C stand for the vertices, 
a, b, c for the sides, 
ex, (3, y for the angles. 

It is understood that a is the side opposite to the vertex A 
and the angle at A is called ex. 

(III) In section 20, the letters a, b, x, y are particu­
larly well chosen to indicate the nature and connection 
of the elements denoted. The letters a, b hint that the 
magnitudes denoted are constants; x, y indicate variables; 
a precedes b as x precedes y and this suggests that a is in 
the same relation to b as x is to y. In fact, a and x are 
horizontal, b andy vertical, and a : b = x : y. 

7. The notation 

b. ABC,.__ b. EFG 

indicates that the two triangles in question are similar. 
In modern books, the formula is meant to indicate that 
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the two triangles are similar, the vertices corresponding 
to each other in the order as they are written, A to E, B 
to F, C to G. In older books, this proviso about the order 
was not yet introduced; the reader had to look at the 
figure or remember the derivation in order to ascertain 
which vertex corresponded to which. 

The modern notation is much preferable to the older 
one. Using the modern notation, we may draw conse­
quences from the formula without looking at the figure. 
Thus, we may derive that 

LA= LE 
AB : BC = EF : FG 

and other relations of the same kind. The older notation 
expresses less and does not allow such definite conse­
quences. 

A notation expressing more than another may be 
termed more pregnant. The modern notation for simili­
tude of triangles is more pregnant than the older one, 
reflects the order and connection of things more fully 
than the older one, and therefore, it may serve as basis 
for more consequences than the older one. 

8. Words have second meanings. Certain contexts in 
which a word is often used influence it and add some­
thing to its primary meaning, some shade, or second 
meaning, or "connotation." If we write carefully, we try 
to choose among the words having almost the same mean­
ing the one whose second meaning is best adapted. 

There is something similar in mathematical notation. 
Even mathematical symbols may acquire a sort of second 
meaning from contexts in which they are often used. If 
we choose our notation carefully, we have to take this 
circumstance into account. Let us illustrate the point. 

There are certain letters which have acquired a firmly 
rooted, traditional meaning. Thus, e stands usually for 
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the basis of natural logarithms, i for v -1, the imaginary 
unit, and 7T' for the ratio of the circumferer.ce of the 
circle to the diameter. It is on the whole better to use 
such symbols only in their traditional meaning. If we use 
such a symbol in some other meaning its traditional 
meaning could occasionally interfere and be embarrass­
ing, even misleading. It is true that harmful second 
meanings of this sort give less trouble to the beginner 
who has not yet studied many subjects than to the mathe­
matician who should have sufficient experience to deal 
with such nuisances. 

Second meanings of the symbols can also be helpful, 
even very helpful, if they are used with tact. A notation 
used on former occasions may assist us in recalling some 
useful procedure; of course, we should be sufficiently 
careful to separate clearly the present (primary) mean­
ing of the symbol from its former (secondary) mean­
ing. A standing notation [as the traditional notation for 
the parts of the triangle which we mentioned before, 
6 (II) ] has great advantages; used on several former 
occasions it may assist us in recalling various formerly 
used procedures. We remember our formulas in some 
standing notation. Of course, we should be sufficiently 
careful when, owing to particular circumstances, we are 
obliged to use a standing notation in a meaning some­
what different from the usual one. 

g. When we have to choose between two notations, 
one reason may speak for one, and some other reason for 
the other. We need experience and taste to choose the 
more suitable notation as we need experience and taste 
to choose more suitable words. Yet it is good to know the 
various advantages and disadvantages discussed in the 
foregoing. At any rate, we should choose our notation 
carefully, and have some good reason for our choice. 

10. Not only the most hopeless boys in the class but 
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also quite intelligent students may have an aversion for 
algebra. There is always something arbitrary and artifi­
cial about notation; to learn a new notation is a burden 
for the memory. The intelligent student refuses to as­
sume the burden if he does not see any compensation for 
it. The intelligent student is justified in his aversion for 
algebra if he is not given ample opportunity to convince 
himself by his own experience that the language of 
mathematical symbols assists the mind. To help him to 
such experience is an important task of the teacher, one 
of his most important tasks. 

I say that it is an important task but I do not say that 
it is an easy one. The foregoing remarks may be of some 
help. See also SETTING uP EQUATIONS. Checking a formula 
by extensive discussion of its properties may be recom­
mended as a particularly instructive exercise; see section 
14 and CAN YOU CHECK THE RESULT? 2. 

Pappus, an important Greek mathematician, lived 
probably around A.D. 300. In the seventh book of his 
Collectiones, Pappus reports about a branch of study 
which he calls analyomenos. We can render this name 
in English as "Treasury of Analysis," or as "Art of 
Solving Problems," or even as "Heuristic"; the last term 
seems to be preferable here. A good English translation 
of Pappus's report is easily accessible7; what follows is a 
free rendering of the original text: 

"The so-called Heuristic is, to put it shortly, a special 
body of doctrine for the use of those who, after having 
studied the ordinary Elements, are desirous of acquiring 
the ability to solve mathematical problems, and it is use­
ful for this alone. It is the work of three men, Euclid, 
the author of the Elements, Apollonius of Perga, and 

7 T. L. Heath , The Thirteen Books of Euclid's Elements, Cam­
bridge, 1908, vol. 1, p. 138. 
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Aristaeus the elder. It teaches the procedures of analysis 
and synthesis. 

"In analysis, we start from what is required, we take it 
for granted, and we draw consequences from it, and con­
sequences from the consequences, till we reach a point 
that we can use as starting point in synthesis. For in 
analysis we assume what is required to be done as already 
done (what is sought as already found, what we have to 
prove as true) . We inquire from what antecedent the 
desired result could be derived; then we inquire again 
what could be the antecedent of that antecedent, and so 
on, until passing from antecedent to antecedent, we come 
eventually upon something already known or admittedly 
true. This procedure we call analysis, or solution back­
wards, or regressive reasoning. 

"But in synthesis, reversing the process, we start from 
the point which we reached last of all in the analysis, 
from the thing already known or admittedly true. We 
derive from it what preceded it in the analysis, and go 
on making derivations until, retracing our steps, we 
finally succeed in arriving at what is required. This pnr 
cedure we call synthesis, or constructive solution, or 
progressive reasoning. 

"Now analysis is of two kinds; the one is the analysis 
of the 'problems to prove' and aims at establishing true 
theorems; the other is the analysis of the 'problems to 
find' and aims at finding the unknown. 

"If we have a 'problem to prove' we are required to 
prove or disprove a clearly stated theorem A. We do not 
know yet whether A is true or false; but we derive from 
A another theorem B, from B another C, and so on, until 
we come upon a last theorem L about which we have 
definite knowledge. If L is true, A will be also true, pro­
vided that all our derivations are convertible. From L 
we prove the theorem K which preceded Lin the analysis 
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and, proceding in the same way, we retrace our steps; 
from C we prove B, from B we prove A, and so we attain 
our aim. If, however, L is false, we have proved A false. 

"If we have a 'problem to find' we are required to find 
a certain unknown x satisfying a clearly stated condition. 
We do not know yet whether a thing satisfying such a 
condition is possible or not; but assuming that there is 
an x satisfying the condition imposed we derive from it 
another unknown y which has to satisfy a related con­
dition; then we link y to still another unknown, and so 
on, until we come upon a last unknown z which we can 
find by some known method. If there is actually a z 
satisfying the condition imposed upon it, there will be 
also an x satisfying the original condition, provided that 
all our derivations are convertible. We first find z; then, 
knowing z, we find the unknown that preceded z in the 
analysis; proceeding in the same way, we retrace our 
steps, and finally, knowing y, we obtain x, and so we 
attain our aim. If, however, there is nothing that would 
satisfy the condition imposed upon z, the problem con­
cerning x has no solution." 

We should not forget that the foregoing is not a literal 
translation but a free rendering, a paraphrase. Various 
differences between the original and the paraphrase de­
serve comment, for Pappus's text is important in many 
ways. 

1. Our paraphrase uses a more definite terminology 
than the original and introduces the symbols A, B, . .. L, 
x, y, ... z which the original has not. 

2. The paraphrase has (p. 141, line 30) "mathematical 
problems" where the original means "geometrical prob­
lems." This emphasizes that the procedures described by 
Pappus are by no means restricted to geometric prob­
lems; they are, in fact, not even restricted to mathemati­
cal problems. We have to illustrate this by examples 
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since, in these matters, generality and independence from 
the nature of the subject are important (see section 3). 

3· Algebraic illustration. Find x satisfying the equation 

8(43) + 4-a;) - 54(23) + 2-a;) + 101 = o. 

This is a "problem to find," not too easy for a beginner. 
He has to be familiar with the idea of analysis; not with 
the word "analysis" of course, but with the idea of at­
taining the aim by repeated reduction. Moreover, he has 
to be familiar with the simplest sorts of equations. Even 
with some knowledge, it takes a good idea, a little luck, 
a little invention to observe that, since 4m = (2m)2 and 
4-m = (2m)-2, it may be advantageous to introduce 

Y =2m. 

Now, this substitution is really advantageous, the equa­
tion obtained for y 

8 02 + ;2) - 54 (J + ~) + I 0 I = 0 
appears simpler than the original equation; but our task 
is not yet finished. It needs another little invention, an­
other substitution 

I 
z=y+-

y 

which transforms the condition into 

8z2 - 54z + 8 5 = o. 

Here the analysis ends, provided that the problem-solver 
is acquainted with the solution of quadratic equations. 

What is the synthesis? Carrying through, step by step, 
the calculations whose possibility was foreseen by the 
analysis. The problem-solver needs no new idea to finish 
his problem, only some patience and attention in calcu­
lating the various unknowns. The order of calculation is 
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opposite to the order of invention; first z is found 
(z = 5/2, 17/4), then y (y = 2, 1/2, 4, 1/4), and finally 
the originally required x (x = 1, -1, 2, - 2). The syn­
thesis retraces the steps of the analysis, and it is easy to 
see in the present case why it does so. 

4· Nonmathematical illustration. A primitive man 
wishes to cross a creek; but he cannot do so in the usual 
way because the water has risen overnight. Thus, the 
crossing becomes the object of a problem; "crossing the 
creek" is the x of this primitive problem. The man may 
recall that he has crossed some other creek by walking 
along a fallen tree. He looks around for a suitable fallen 
tree which becomes his new unknown, his y. He cannot 
find any suitable tree but there are plenty of trees stand­
ing along the creek; he wishes that one of them would 
fall. Could he make a tree fall across the creek? There is 
a great idea and there is a new unknown; by what means 
could he tilt the tree over the creek? 

This train of ideas ought to be called analysis if we 
accept the terminology of Pappus. If the primitive man 
succeeds in finishing his analysis he may become the in­
ventor of the bridge and of the axe. What will be the 
synthesis? Translation of ideas into actions. The finish­
ing act of the synthesis is walking along a tree across the 
creek. 

The same objects fill the analysis and the synthesis; 
they exercise the mind of the man in the analysis and his 
muscles in the synthesis; the analysis consists in thoughts, 
the synthesis in acts. There is another difference; the 
order is reversed. Walking across the creek is the first 
desire from which the analysis starts and it is the last 
act with which the synthesis ends. 

5· The paraphrase hints a little more distinctly than 
the original the natural connection between analysis and 
synthesis. This connection is manifest after the foregoing 
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examples. Analysis comes naturally first, synthesis after­
wards; analysis is invention, synthesis, execution; analy­
sis is devising a plan, synthesis carrying through the plan. 

6. The paraphrase preserves and even emphasizes cer­
tain curious phrases of the original: "assume what is 
required to be done as already done, what is sought as 
found, what you have to prove as true." This is paradoxi­
cal; is it not mere self-deception to assume that the 
problem that we have to solve is solved? This is obscure; 
what does it mean? If we consider closely the context and 
try honestly to understand our own experience in solving 
problems, the meaning can scarcely be doubtful. 

Let us first consider a "problem to find." Let us call the 
unknown x and the data a, b, c. To "assume the problem 
as solved" means to assume that there exists an object x 
satisfying the condition-that is, having those relations 
to the data a, b, c which the condition prescribes. This 
assumption is made just in order to start the analysis, it 
is provisional, and it is harmless. For, if there is no such 
object and the analysis leads us anywhere, it is bound 
to lead us to a final problem that has no solution and 
hence it will be manifest that our original problem has 
no solution. Then, the assumption is useful. In order to 
examine the condition, we have to conceive, to represent 
to ourselves, or to visualize geometrically the relations 
which the condition prescribes between x and a, b, c; 
how could we do so without conceiving, representing, or 
visualizing x as existent? Finally, the assumption is nat­
ural. The primitive man whose thoughts and deeds we 
discussed in comment 4 imagines himself walking on a 
fallen tree and crossing the creek long before he actually 
can do so; he sees his problem "as solved." 

The object of a "problem to prove" is to prove a cer­
tain theorem A. The advice to "assume A as true" is just 
an invitation to draw consequences from the theorem A 
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although we have not yet proved it. People with a certain 
mental character or a certain philosophy may shrink 
from drawing consequences from an unproved theorem; 
but such people cannot start an analysis. 

Compare FIGURES, 2. 

7· The paraphrase uses twice the important phrase 
"provided that all our derivations are convertible"; see 
p. 142, line 33 and p. 143, lines 14-15. This is an inter­
polation; the original contains nothing of the sort and 
the lack of such a proviso was observed and criticized in 
modern times. See AUXILIARY PROBLEM, 6 for the notion 
of "convertible reduction." 

8. The "analysis of the problems to prove" is explained 
in the paraphrase in words quite different from those 
used by the original but there is no change in the sense; 
at any rate, there is no intention to change the sense. 
The analysis of the "problem to find," however, is ex­
plained more concretely in the paraphrase than in the 
original. The original seems to aim at the description of 
a somewhat more general procedure, the construction of 
a chain of equivalent auxiliary problems which is de­
scribed in AUXILIARY PROBLEM, 7· 

g. Many elementary textbooks of geometry contain a 
few remarks about analysis, synthesis, and "assuming the 
problem as solved." There is little doubt that this almost 
ineradicable tradition goes back to Pappus, although 
there is hardly a current textbook whose writer would 
show any direct acquaintance with Pappus. The subject 
is important enough to be mentioned in elementary text­
books but easily misunderstood. The circumstance alone 
that it is restricted to textbooks of geometry shows a cur­
rent lack of understanding; see comment 2 above. If the 
foregoing comments could contribute to a better under­
standing of this matter their length would be amply 
justified. 
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For another example, a different viewpoint, and 
further comments see WORKING BACKWARDS. 

Compare also REDUCTIO AD ABSURDUM AND INDIRECT 

PROOF, 2. 

Pedantry and mastery are opposite attitudes toward 
rules. 

1. To apply a rule to the letter, rigidly, unquestion­
ingly, in cases where it fits and in cases where it does not 
fit, is pedantry. Some pedants are poor fools; they never 
did understand the rule which they apply so conscien­
tiously and so indiscriminately. Some pedants are quite 
successful; they understood their rule, at least in the 
beginning (before they became pedants), and chose a 
good one that fits in many cases and fails only occasion­
ally. 

To apply a rule with natural ease, with judgment, 
noticing the cases where it fits, and without ever letting 
the words of the t·ule obscure the purpose of the action 
or the opportunities of the situation, is mastery. 

2. The questions and suggestions of our list may be 
helpful both to problem·solvers and to teachers. But, 
first, they must be understood, their proper use must be 
learned, and learned by trial and error, by failure and 
success, by experience in applying them. Second, their 
use should never become pedantic. You should ask no 
question, make no suggestion, indiscriminately, follow­
ing some rigid habit. Be prepared for various questions 
and suggestions and use your judgment. You are doing 
a hard and exciting problem; the step you are going to 
try next should be prompted by an attentive and open­
minded consideration of the problem before you. You 
wish to help a student; what you say to your student 
should proceed from a sympathetic understanding of his 
difficulties. 
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And if you are inclined to be a pedant and must rely 
upon some rule learn this one: Always use your own 
brains first. 

Practical problems are different in various respects 
from purely mathematical problems, yet the principal 
motives and procedures of the solution are essentially the 
same. Practical engineering problems usually involve 
mathematical problems. We will say a few words about 
the differences, analogies, and connections between these 
two sorts of problems. 

1. An impressive practical problem is the construction 
of a dam across a river. We need no special knowledge 
to understand this problem. In almost prehistoric times, 
long before our modern age of scientific theories, men 
built dams of some sort in the valley of the Nile, and in 
other parts of the world, where the crops depended on 
irrigation. 

Let us visualize the problem of constructing an impor­
tant modern dam. 

What is the unknown? Many unknowns are involved 
in a problem of this kind: the exact location of the dam, 
its geometric shape and dimensions, the materials used 
in its construction, and so on. 

What is the condition? We cannot answer this question 
in one short sentence because there are many conditions. 
In so large a project it is necessary to satisfy many im­
portant economic needs and to hurt other needs as little 
as possible. The dam should provide electric power, sup­
ply water for irrigation or the use of certain communities, 
and also help to control floods. On the other hand, it 
should disturb as little as possible navigation, or eco­
nomically important fish-life, or beautiful scenery; and 
so forth. And, of course, it should cost as little as possible 
and be constructed as quickly as possible. 
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What are the data? The multitude of desirable data is 
tremendous. We need topographical data concerning the 
vicinity of the river and its tributaries; geological data 
important for the solidity of foundations, possible leak­
age, and available materials of construction; meteorologi­
cal data about annual precipitation and the height of 
floods; economic data concerning the value of ground 
which will be flooded, cost of materials and labor; and 
soon. 

Our example shows that unknowns, data, and condi­
tions are more complex and less sharply defined in a 
practical problem than in a mathematical problem. 

2. In order to solve a problem, we need a certain 
amount of previously acquired knowledge. The modern 
engineer has a highly specialized body of knowledge at 
his disposal, a scientific theory of the strength of mate­
rials, his own experience, and the mass of engineering 
experience stored in special technical literature. We can­
not avail ourselves of such special knowledge here but 
we may try to imagine what was in the mind of an 
ancient Egyptian dam-builder. 

He has seen, of course, various other, perhaps smaller, 
dams: banks of earth or masonry holding back the water. 
He has seen the flood, laden with all sorts of debris, 
pressing against the bank. He might have helped to re­
pair the cracks and the erosion left by the flood. He 
might have seen a dam break, giving way under the 
impact of the flood. He has certainly heard stories about 
dams withstanding the test of centuries or causing catas­
trophe by an unexpected break. His mind may have 
pictured the pressure of the river against the surface of 
the dam and the strain and stress in its interior. 

Yet the Egyptian dam-builder had no precise, quanti­
tative, scientific concepts of fluid pressure or of strain and 
stress in a solid body. Such concepts form an essential 
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part of the intellectual equipment of a modern engineer. 
Yet the latter also uses much knowledge which has not 
yet quite reached a precise, scientific level; what he 
knows about erosion by flowing water, the transportation 
of silt, the plasticity and other not quite clearly circum­
scribed properties of certain materials, is knowledge of 
a rather empirical character. 

Our example shows that the knowledge needed and the 
concepts used are more complex and less sharply defined 
in practical problems than in mathematical problems. 

3· Unknowns, data, conditions, concepts, necessary 
preliminary knowledge, everything is more complex and 
less sharp in practical problems than in purely mathe­
matical problems. This is an important difference, per­
haps the main difference, and it certainly implies further 
differences; yet the fundamental motives and procedures 
of the solution appear to be the same for both sorts of 
problems. 

There is a widespread opinion that practical problems 
need more experience than mathematical problems. This 
may be so. Yet, very likely, the difference lies in the 
nature of the knowledge needed and not in our attitude 
toward the problem. In solving a problem of one or the 
other kind, we have to rely on our experience with simi­
lar problems and we often ask the questions: Have you 
seen the same problem in a slightly different form? Do 
you know a related problem? 

In solving a mathematical problem, we start from very 
clear concepts which are fairly well ordered in our mind. 
In solving a practical problem, we are often obliged to 
start from rather hazy ideas; then, the clarification of the 
concepts may become an important part of the problem. 
Thus, medical science is in a better position to check 
infectious diseases today than it was in the times before 
Pasteur when the notion of infection itself was rather 



Practical Problems 

hazy. Have you taken into account all essential notions 
involved in the problem? This is a good question for all 
sorts of problems but its use varies widely with the nature 
of the intervening notions. 

In a perfectly stated mathematical problem all data 
and all clauses of the condition are essential and must be 
taken into account. In practical problems we have a mul­
titude of data and conditions; we take into account as 
many as we can but we are obliged to neglect some. Take 
the case of the designer of a large dam. He considers the 
public interest and important economic interests but he 
is bound to disregard certain petty claims and grievances. 
The data of his problem are, strictly speaking, inex­
haustible. For instance, he would like to know a little 
more about the geologic nature of the ground on which 
the foundations must be laid, but eventually he must 
stop collecting geologic data although a certain margin 
of uncertainty unavoidably remains. 

Did you use all the data? Did you use the whole con­
dition? We cannot miss these questions when we deal 
with purely mathematical problems. In practical prob­
lems, however, we should put these questions in a modi­
fied form: Did you use all the data which could con­
tribute appreciably to the solution? Did you use all the 
conditions which could influence appreciably the solu­
tion? We take stock of the available relevant informa­
tion, we collect more information if necessary, but 
eventually we must stop collecting, we must draw the 
line somewhere, we cannot help neglecting something. 
"If you will sail without danger, you must never put to 
sea." Quite often, there is a great surplus of data which 
have no appreciable influence on the final form of the 
solution. 

4· The designers of the ancient Egyptian dams had to 
rely on the common-sense interpretation of their experi-
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ence, they had nothing else to rely on. The modern 
engineer cannot rely on common sense alone, especially 
if his project is of a new and daring design; he has to cal­
culate the resistance of the projected dam, foresee quan­
titatively the strain and stress in its interior. For this 
purpose, he has to apply the theory of elasticity (which 
applies fairly well to constructions in concrete). To 
apply this theory, he needs a good deal of mathematics; 
the practical engineering problem leads to a mathemati­
cal problem. 

This mathematical problem is too technical to be dis­
cussed here; all we can say about it is a general remark. 
In setting up and in solving mathematical problems de­
rived £row practical problems, we usually content our­
selves with an approximation. We are bound to neglect 
some minor data and conditions of the practical prob­
lem. Therefore it is reasonable to allow some slight 
inaccuracy in the computations especially when we can 
gain in simplicity what we lose in accuracy. 

5· Much could be said about approximations that 
would deserve general interest. We cannot suppose, how­
ever, any specialized mathematical knowledge and there­
fore we restrict ourselves to just one intuitive and 
instructive example. 

The drawing of geographic maps is an important prac­
tical problem. Devising a map, we often assume that the 
earth is a sphere. Now this is only an approximate as­
sumption and not the exact truth. The surface of the 
earth is not at all a mathematically defined surface and 
we definitely know that the earth is flattened at the poles. 
Assuming, however, that the earth is a sphere, we may 
draw a map of it much more easily. We gain much in 
simplicity and do not lose a great deal in accuracy. In 
fact, let us imagine a big ball that has exactly the shape 
of the earth and that has a diameter of 25 feet at its 



154 Problems to Find, Pmblems to Prove 

equator. The distance between the poles of such a ball is 
less than 25 feet because the earth is flattened, but only 
about one inch less. Thus the sphere yields a good prac­
tical approximation. 

Problems to find, problems to prove. We draw a paral­
lel between these two kinds of problems. 

1. The aim of a "problem to find" is to find a certain 
object, the unknown of the problem. 

The unknown is also called "quaesitum," or the thing 
sought, or the thing required. "Problems to find" may be 
theoretical or practical, abstract or concrete, serious prob­
lems or mere puzzles. We may seek all sorts of unknowns; 
we may try to find, to obtain, to acquire, to produce, or 
to construct all imaginable kinds of objects. In the prob­
lem of the mystery story the unknown is a murderer. In 
a chess problem the unknown is a move of the chessmen. 
In certain riddles the unknown is a word. In certain ele­
mentary problems of algebra the unknown is a number. 
In a problem of geometric construction the unknown is 
a figure. 

2. The aim of a "problem to prove" is to show con­
clusively that a certain clearly stated assertion is true, or 
else to show that it is false. We have to answer the ques­
tion: Is this assertion true or false? And we have to 
answer conclusively, either by proving the assertion true, 
or by proving it false. 

A witness affirms that the defendant stayed at home a 
certain night. The judge has to find out whether this 
assertion is true or not and, moreover, he has to give as 
good grounds as possible for his finding. Thus, the judge 
has a "problem to prove." Another "problem to prove" 
is to "prove the theorem of Pythagoras." We do not say: 
"Prove or disprove the theorem of Pythagoras." It would 
be better in some respects to include in the statement of 
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the problem the possibility o£ disproving, but we may 
neglect it, because we know that the chances for disprov­
ing the theorem of Pythagoras are rather slight. 

3· The principal parts of a "problem to find" are the 
unknown, the data, and the condition. 

If we have to construct a triangle with sides a, b, c, the 
unknown is a triangle, the data are the three lengths a, 
b, c, and the triangle is required to satisfy the condition 
that its sides have the given lengths a, b, c. If we have to 
construct a triangle whose altitudes are a, b, c, the un­
known is an object of the same category as before, the 
data are the same, but the condition linking the unknown 
to the data is different. 

4· If a "problem to prove" is a mathematical problem 
of the usual kind, its principal parts are the hypothesis 
anct the conclusion of the theorem which has to be proved 
or disproved. 

"If the four sides of a quadrilateral are equal, then the 
two diagonals are perpendicular to each other." The 
second part starting with "then" is the conclusion, the 
first part starting with "if" is the hypothesis. 

[Not all mathematical theorems can be split naturally 
into hypothesis and conclusion. Thus, it is scarcely pos­
sible to split so the theorem: "There are an infinity of 
prime numbers."] 

5· If you wish to solve a "problem to find" you must 
know, and know very exactly, its principal parts, the 
unknown, the data, and the condition. Our list contains 
many questions and suggestions concerned with these 
parts. 

What is the unknown? What are the data? What is the 
condition? 

Separate the various parts of the condition. 
Find the connection between the data and the un­

k1.own. 
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Look at the unknown! And try to think of a familiar 
problem having the same or a similar unknown. 

Keep only a part of the condition, drop the other part; 
how far is the unknown then determined, how can it 
vary? Could you derive something useful from the data? 
Could you think of other data appropriate to determine 
the unknown? Could you change the unknown, or the 
data, or both if necessary, so that the new unknown and 
the new data are nearer to each other? 

Did you use all the data? Did you use the whole con­
dition? 

6. If you wish to solve a "problem to prove" you must 
know, and know very exactly, its principal parts, the 
hypothesis, and the conclusion. There are useful ques­
tions and suggestions concerning these parts which cor­
respond to those questions and suggestions of our list 
which are specially adapted to "problems to find." 

What is the hypothesis? What is the conclusion? 
Separate the various parts of the hypothesis. 
Find the connection between the hypothesis and the 

conclusion. 
Look at the conclusion! And try to think of a familiar 

theorem having the same or a similar conclusion. 
Keep only a part of the hypothesis, drop the other 

part; is the conclusion still valid? Could you derive some­
thing useful from the hypothesis? Could you think of 
another hypothesis from which you could easily derive 
the conclusion? Could you change the hypothesis, or the 
conclusion, or both if necessary, so that the new hypoth­
esis and the new conclusion are nearer to each other? 

Did you use the whole hypothesis? 
7· "Problems to find" are more important in elemen­

tary mathematics, "problems to prove" more important 
in advanced mathematics. In the present book, "prob­
lems to find" are more emphasized than the other kind, 
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but the author hopes to reestablish the balance in a fuller 
treatment of the subject. 

Progress and achievement. Have you made any prog­
ress? What was the essential achievement? We may ad­
dress questions of this kind to ourselves when we are 
solving a problem or to a student whose work we super­
vise. Thus, we are used to judge, more or less confidently, 
progress and achievement in concrete cases. The step 
from such concrete cases to a general description is not 
easy at all. Yet we have to undertake this step if we wish 
to make our study of heuristic somewhat complete and 
we must try to clarify what constitutes, in general, prog­
ress and achievement in solving problems. 

1. In order to solve a problem, we must have some 
knowledge of the subject-matter and we must select and 
collect the relevant items of our existing but initially 
dormant knowledge. There is much more in our con­
ception of the problem at the end than was in it at the 
outset; what has been added? What we have succeeded 
in extracting from our memory. In order to obtain the 
solution we have to recall various essential facts. We have 
to recollect formerly solved problems, known theorems, 
definitions, if our problem is mathematical. Extracting 
such relevant elements from our memory may be termed 
mobilization. 

2. In order to solve a problem, however, it is not 
enough to recollect isolated facts, we must combine these 
facts, and their combination must be well adapted to the 
problem at hand. Thus, in solving a mathematical prob­
lem, we have to construct an argument connecting the 
materials recollected to a well adapted whole. This 
adapting and combining activity may be termed organ­
ization. 

3· In fact, mobilization and organization can never be 
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really separated. Working at the problem with concentra­
tion, we recall only facts which are more or less con­
nected with our purpose, and we have nothing to connect 
and organize but materials we have recollected and 
mobilized. 

Mobilization and organization are but two aspects of 
the same complex process which has still many other 
aspects. 

4· Another aspect of the progress of our work is that 
our mode of conception changes. Enriched with all the 
materials which we have recalled, adapted to it, and 
worked into it, our conception of the problem is much 
fuller at the end than it was at the outset. Desiring to 
proceed from our initial conception of the problem to a 
more adequate, better adapted conception, we try various 
standpoints and view the problem from different sides. 
We could make hardly any progress without VARIATION 

OF THE PROBLEM. 

5· As we progress toward our final goal we see more 
and more of it, and when we see it better we judge that we 
are nearer to it. As our examination of the problem ad­
vances, we foresee more and more clearly what should be 
done for the solution and how it should be done. Solving 
a mathematical problem we may foresee, if we are lucky, 
that a certain known theorem might be used, that the 
consideration of a certain formerly solved problem might 
be helpful, that going back to the meaning of a certain 
technical term might be necessary. We do not foresee 
such things with certainty, only with a certain degree of 
plausibility. We shall attain complete certainty when we 
have obtained the complete solution, but before obtain­
ing certainty we must often be satisfied with a more or 
less plausible guess. Without considerations which are 
only plausible and provisional, we could never find the 
solution which is certain and final. We need HEURISTIC 

REASONING. 
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6. What is progress toward the solution? Advancing 
mobilization and organization of our knowledge, evolu­
tion of our conception of the problem, increasing pre­
vision of the steps which will constitute the final 
argument. We may advance steadily, by small imper­
ceptible steps, but now and then we advance abruptly, 
by leaps and bounds. A sudden advance toward the solu­
tion is called a BRIGHT IDEA, a good idea, a happy 
thought, a brain-wave (in German there is a more tech­
nical term, Einfall). What is a bright idea? An abrupt 
and momentous change of our outlook, a sudden reor­
ganization of our mode of conceiving the problem, a just 
emerging confident prevision of the steps we have to take 
in order to attain the solution. 

7· The foregoing considerations provide the questions 
and suggestions of our list with the right sort of back­
ground. 

Many of these questions and suggestions aim directly 
at the mobilization of our formerly acquired knowledge: 
Have you seen it before? Or have you seen the same prob­
lem in a slightly different form? Do you know a related 
problem? Do you know a theorem that could be useful? 
Look at the unknown! And try to think of a familiar 
problem having the same or a similar unknown. 

There are typical situations in which we think that we 
have collected the right sort of material and we work for 
a better organization of what we have mobilized: Here 
is a problem related to yours and solved before. Could 
you use it? Could you use its result? Could you use its 
method? Should you introduce some auxiliary element in 
order to make its use possible? 

There are other typical situations in which we think 
that we have not yet collected enough material. We 
wonder what is missing: Did you use all the data? Did 
you use the whole condition? Have you taken into ac­
count all essential notions involved in the problem? 
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Some questions aim directly at the variation of the 
problem: Could you restate the problem? Could you 
restate it still differently? Many questions aim at the 
variation of the problem by specified means, as going 
back to the DEFINITION, using ANALOGY, GENERALIZATION, 

SPECIALIZATION, DECOMPOSING AND RECOMBINING. 

Still other questions suggest a trial to foresee the na­
ture of the solution we are striving to obtain: Is it pos­
sible to satisfy the condition? Is the condition sufficient 
to determine the unknown? Or is it insufficient? Or re­
dundant? Or contradictory? 

The questions and suggestions of our list do not men­
tion directly the bright idea; but, in fact, all are con­
cerned with it. Understanding the problem we prepare 
for it, devising a plan we try to provoke it, having pro­
voked it we carry it through, looking back at the course 
and the result of the solution we try to exploit it better.s 

Puzzles. According to section 3, the questions and sug­
gestions of our list are independent of the subject-matter 
and applicable to all kinds of problems. It is quite inter­
esting to test this assertion on various puzzles. 

Take, for instance, the words 

DRY OXTAIL IN REAR. 

The problem is to find an "anagram," that is, a rear­
rangement of the letters contained in the given words 
into one word. It is interesting to observe that, when we 
are solving this puzzle, several questions of our list are 
pertinent and even stimulating. 

What is the unknown? A word. 
What are the data? The four words DRY OXTAIL 

IN REAR. 

8 Several points discussed in this article are more fully considered 
in the author's paper, Acta Psychologica, vol. 4 (1938) , pp. 113-170. 
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What is the condition? The desired word has fifteen 
letters, the letters contained in the four given words. It is 
probably a not too unusual English word. 

Draw a figure. It is quite useful to mark out fifteen 
blank spaces: 

Could you restate the problem? We have to find a 
word containing, in some arrangement, the letters 

AAEIIOY DLNRRRTX. 

This is certainly an equivalent restatement of the prob­
lem (see AUXILIARY PROBLEM, 6) . It may be an advan­
tageous restatement. Separating the vowels from the 
consonants (this is important, the alphabetical order is 
not) we see another aspec[ of the problem. Thus, we see 
now that the desired word has seven syllables unless it 
has some diphthongs. 

If you cannot solve the proposed problem, try to solve 
first some related problem. A related problem is to form 
words with some of the given letters. We can certainly 
form short words of this kind. Then we try to find longer 
and longer words. The more letters we use the nearer we 
may come to the desired word. 

Could you solve a part of the problem? The desired 
word is so long that it must have distinct parts. It is, 
probably, a compound word, or it is derived from some 
other word by adding some usual ending. Which usual 
ending could it be? 

----------ATION 
------------ELY 

Keep only a part of the condition and drop the other 
part. We may try to think of a long word with, possibly, 
as many as seven syllables and relatively few consonants, 
containing an X and a Y. 
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The questions and suggestions of our list cannot work 
magic. They cannot give us the solution of all possible 
puzzles without any effort on our part. If the reader 
wishes to find the word, he must keep on trying and 
thinking about it. What the questions and suggestions 
of the list can do is to "keep the ball rolling." When, 
discouraged by lack of success, we are inclined to drop 
the problem, they may suggest to us a new trial, a new 
aspect, a new variation of the problem, a new stimulus; 
they may keep us thinking. 

For another example see DECOMPOSING AND RECOMBIN­

ING, 8. 

Reductio ad absurdum and indirect proof are different 
but related procedures. 

Reductio ad absurdum shows the falsity of an assump­
tion by deriving from it a manifest absurdity. "Reduc­
tion to an absurdity" is a mathematical procedure but it 
has some resemblance to irony which is the favorite 
procedure of the satirist. Irony adopts, to all appearance, 
a certain opinion and stresses it and overstresses it till it 
leads to a manifest absurdity. 

Indirect proof establishes the truth of an assertion by 
showing the falsity of the opposite assumption. Thus, 
indirect proof has some resemblance to a politician's 
trick of establishing a candidate by demolishing the repu­
tation of his opponent. 

Both "reductio ad absurdum" and indirect proof are 
effective tools of discovery which present themselves natu­
rally to an intent mind. Nevertheless, they are disliked 
by a few philosophers and many beginners, which is 
understandable; satirical people and tricky politicians do 
not appeal to everybody. We shall first illustrate the 
effectiveness of both procedures by examples and discuss 
objections against them afterwards. 
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1. Reductio ad absurdum. Write numbers using each 
of the ten digits exactly once so that the sum of the 
numbers is exactly 100. 

We may learn something by trying to solve this puzzle 
whose statement demands some elucidation. 

What is the unknown? A set of numbers; and bynum­
bers we mean here, of course, ordinary integers. 

What is given? The number 100. 

What is the condition? The condition has two parts. 
First, writing the desired set of numbers, we must use 
each of the ten digits, o, 1, 2, 3, 4, 5, 6, 7, 8 and g, just 
once. Second, the sum of all numbers in the set must 
be 100. 

Keep only a part of the condition, drop the other part. 
The first part alone is easy to satisfy. Take the set 19, 
28, 37, 46, 50; each figure occurs just once. But, of course, 
the second part of the condition is not satisfied; the sum 
of these numbers is 180, not 100. We could, however, do 
better. "Try, try again." Yes, 

19 + 28 + 30 + 7 + 6 + 5 + 4 = 99· 

The first part of the condition is satisfied, and the second 
part is almost satisfied; we have 99 instead of 100. Of 
course, we can easily satisfy the second part if we drop 
the first: 

19 + 28 + 31 + 7 + 6 + 5 + 4 = 100. 

The first part is not satisfied: the figure 1 occurs twice, 
and o not at all; the other figures are all right. "Try, try 
again." 

After a few unsuccessful trials, however, we may be led 
to suspect that it is not possible to obtain 100 in the 
manner required. Eventually the problem arises: Prove 
that it is impossible to satisfy both parts of the proposed 
condition at the same time. 
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Quite good students may find that this problem is 
above their heads. Yet the answer is easy enough if we 
have the right attitude. We have to examine the hypo­
thetical situation in which both parts of the condition 
are satisfied. 

We suspect that this situation cannot-actually arise and 
our suspicion, based on the experience of our unsuccess­
ful trials, has some foundation. Nevertheless, let us keep 
an open mind and let us face the situation in which hy­
pothetically, supposedly, allegedly both parts of the con­
dition are satisfied. Thus, let us imagine a set of num­
bers whose sum is 100. They must be numbers with one 
or two figures. There are ten figures, and these ten figures 
must be all different, since each of the figures, o, 1, 2, 

... 9 should occur just once. Thus, the sum of all ten 
figures must be 

0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45· 

Some of these figures denote units and others tens. It 
takes a little sagacity to hit upon the idea that the sum 
of the figures denoting tens may be of some importance. 
In fact, let t stand for this sum. Then the sum of the 
remaining figures, denoting units, is 45 - t. Therefore, 
the sum of all numbers in the set must be 

IOt + (45 - t) = 100. 

We have here an equation to determine t. It is of the first 
degree and gives 

t =55. 
9 

Now, there is something that is definitely wrong. The 
value of t that we have found is not an integer and t 
should be, of course, an integer. Starting from the sup­
position that both parts of the proposed condition can 
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be simultaneously satisfied, we have been led to a mani­
fest absurdity. How can we explain this? Our original 
supposition must be wrong; both parts of the condition 
cannot be satisfied at the same time. And so we have 
attained our goal, we have succeeded in proving that the 
two parts of the proposed condition are incompatible. 

Our reasoning is a typical "reductio ad absurdum." 
2. Remarks. Let us look back at the foregoing reason­

ing and understand its general trend. 
We wish to prove that it is impossible to fulfill a cer­

tain condition, that is, that the situation in which all 
parts of the condition are simultaneously satisfied can 
never arise. But, if we have proved nothing yet, we have 
to face the possibility that the situation could arise. Only 
by facirg squarely the hypothetical situation and exam­
ining it closely can we hope to perceive some definitely 
wrong point in it. And we must lay our hand upon some 
definitely wrong point if we wish to show conclusively 
that the situation is impossible. Hence we can see that 
the procedure that was successful in our example is rea­
sonable in general: We have to examine the hypothetical 
situation in which all parts of the condition are satisfied, 
although such a situation appears extremely unlikely. 

The more experienced reader may see here another 
point. The main step of our procedure consisted in set­
ting up an equation for t. Now, we could have arrived 
at the same equation without suspecting that something 
was wrong with the condition. If we wish to set up an 
equation, we have to express in mathematical language 
that all parts of the condition are satisfied, although we 
do not know yet whether it is actually possible to satisfy 
all these parts simultaneously. 

Our procedure is "open-minded." We may hope to find 
the unknown satisfying the condition, or we may hope to 
show that the condition cannot be satisfied. It matters 
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little in one respect: the investigation, if it is well con­
ducted, starts in both cases in the same way, examining 
the hypothetical situation in which the condition is 
fulfilled, and shows only in its later course which hope 
is justified. 

Compare FIGURES, 2. Compare also PAPPUs; an analysis 
which ends in disproving the proposed theorem, or in 
showing that the proposed "problem to find" has no 
solution, is actually a "reductio ad absurdum." 

3· Indirect proof. The prime numbers, or primes, are 
the numbers 2, 3, 5, 7• 11, 13, 17, 19, 23, 29, 31, 37, ..• 
which cannot be resolved into smaller factors, although 
they are greater than 1. (The last clause excludes the 
number 1 which, obviously, cannot be resolved into 
smaller factors, but has a different nature and should 
not be counted as a prime.) The primes are the "ulti­
mate elements" into which all integers (greater than 1) 
can be decomposed. For instance, 

630 = 2 • 3 . 3 . 5 • 7 

is decomposed into a product of five primes. 
Is the series of primes infinite or does it end some­

where? It is natural to suspect that the series of primes 
never ends. If it ended somewhere, all integers could be 
decomposed into a finite number of ultimate elements 
and the world would appear "too poor" in a manner of 
speaking. Thus arises the problem of proving the exist­
ence of an infinity of prime numbers. 

This problem is very different from elementary mathe­
matical problems of the usual kind and appears at first 
inaccessible. Yet, as we said, it is extremely unlikely that 
there should be a last prime, say P. Why is it so unlikely? 

Let us face squarely the unlikely situation in which, 
hypothetically, supposedly, allegedly, there is a last prime 
P. Then we could write down the complete series of 
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primes 2, 3, 5, 7• 11, ••. P. Why is this so unlikely? What 
is wrong with it? Can we point out anything that is 
definitely wrong? Indeed, we can. We can construct the 
number 

Q = (2 • 3 • 5 • 7 • 11 • • • P) + 1. 

This number Q is greater than P and therefore, allegedly, 
Q cannot be a prime. Consequently, Q must be divisible 
by a prime. Now, all primes at our disposal are, sup­
posedly, the numbers 2, 3, 5, ... P but Q, divided by any 
of these numbers, leaves the rest 1; and so Q is not 
divisible by any of the primes mentioned which are, 
hypothetically, all the primes. Now, there is something 
that is definitely wrong; Q must be either a prime or it 
must be divisible by some prime. Starting from the sup­
position that there is a last prime P we have been led to 
a manifest absurdity. How can we explain this? Our 
original supposition must be wrong; there cannot be a 
last prime P. And so we have succeeded in proving that 
the series of prime numbers never ends. 

Our proof is a typical indirect proof. (It is a famous 
proof too, due to Euclid; see Proposition 20 of Book IX 
of the Elements.) 

We have established our theorem (that the series of 
primes never ends) by disproving its contradictory op­
posite (that the series of primes ends somewhere) which 
we have disproved by deducing from it a manifest ab­
surdity. Thus we have combined indirect proof with 
"reductio ad absurdum"; this combination is also very 
typical. 

4· Objections. The procedures which we are studying 
encountered considerable opposition. Many objections 
have been raised which are, possibly, only various forms 
of the same fundamental objection. We discuss here a 
"practical" form of the objection, which is on our level. 
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To find a not obvious proof is a considerable intel­
lectual achievement but to learn such a proof, or even to 
understand it thoroughly costs also a certain amount of 
mental effort. Naturally enough, we wish to retain some 
benefit from our effort, and, of course, what we retain 
in our memory should be true and correct and not false 
or absurd. 

But it seems difficult to retain something true from a 
"reductio ad absurdum." The procedure starts from a 
false assumption and derives from it consequences which 
are equally, but perhaps more visibly, false till it reaches 
a last consequence which is manifestly false. If we do not 
wish to store falsehoods in our memory we should forget 
everything as quickly as possible which is, however, not 
feasible because all points must be remembered sharply 
and correctly during our study of the proof. 

The objection to indirect proofs can be now stated 
very briefly. Listening to such a proof, we are obliged to 
focus our attention all the time upon a false assumption 
which we should forget and not upon the true theorem 
which we should retain. 

If we wish to judge correctly of the merits of these 
objections, we should distinguish between two uses of 
the "reductio ad absurdum," as a tool of research and as 
a means of exposition, and make the same distinction 
concerning the indirect proof. 

It must be confessed that "reductio ad absurdum" as a 
means of exposition is not an unmixed blessing. Such a 
"reductio," especially if it is long, may become very pain­
ful indeed for the reader or listener. All the derivations 
which we examine in succession are correct but all the 
situations which we have to face are impossible. Even 
the verbal expression may become tedious if it insists, as 
it should, on emphasizing that everything is based on an 
initial assumption; the words "hypothetically," "sup-
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posedly," "allegedly" must recur incessantly, or some 
other device must be applied continually. We wish to 
reject and forget the situation as impossible but we have 
to retain and examine it as the basis for the next step, 
and this inner discord may become unbearable in the 
long run. 

Yet it would be foolish to repudiate "reductio ad 
absurdum" as a tool of discovery. It may present itself 
naturally and bring a decision when all other means 
seem to be exhausted as the foregoing examples may 
show. 

We need some experience to perceive that there is no 
essential opposition between our two contentions. Ex­
perience shows that usually there is little difficulty in 
converting an indirect proof into a direct proof, or in 
rearranging a proof found by a long "reductio ad ab­
surdum" into a more pleasant form from which the 
"reductio ad absurdum" may even completely disappear 
(or, after due preparation, it may be compressed into 

a few striking sentences). 
In short, if we wish to make full use of our capacities, 

we should be familiar both with "reductio ad absurdum" 
and with indirect proof. When, however, we have suc­
ceeded in deriving a result by either of these methods we 
should not fail to look back at the solution and ask: Can 
you derive the result differently? 

Let us illustrate by examples what we have said. 
5· Rearranging a reductio ad absurdum. We look back 

at the reasoning presented under 1. The reductio ad 
absurdum started from a situation which, eventually, 
turned out to be impossible. Let us however carve out a 
part of the argument which is independent of the initial 
false assumption and contains positive information. Re­
considering what we have done, we may perceive that 
this much is doubtless true: If a set of numbers with one 
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or two digits is written so that each of the ten figures 
occurs just once, then the sum of the set is of the form 

JOt+ (45 - t) = 9 (t + 5). 

Thus, this sum is divisible by g. The proposed puzzle 
demands however that this sum should be 100. Is this 
possible? No, it is not, since 100 is not divisible by g. 

The "reductio ad absurdum" which led to the discov­
ery of the argument vanished from our new presentation. 

By the way, a reader acquainted with the procedure 
of "casting out nines" can see now the whole argument 
at a glance. 

6. Converting an indirect proof. We look back at the 
reasoning presented under 3· Reconsidering carefully 
what we have done, we may find elements of the argu­
ment which are independent of any false assumption, yet 
the best clue comes from a reconsideration of the mean­
ing of the original problem itself. 

What do we mean by saying that the series of primes 
never ends? Evidently, just this: when we have ascer­
tained any finite set of primes as 2, 3, 5, 7, 11, ... P, 
where P is the last prime hitherto found, there is always 
one more prime. Thus, what must we do to prove the 
existence of an infinity of primes? We have to point out 
a way of finding a prime different from all primes hith­
erto found. Thus, our "problem to prove" is in fact re­
duced to a "problem to find": Being given the primes 
2, 3, 5, ... P, find a new prime N different from all the 
given primes. 

Having restated our original problem iD this new form, 
we have taken the main step. It is relatively easy now to 
see how to use the essential parts of our former argu­
ment for the new purpose. In fact, the number 

Q = (2 • 3 · 5 · 7 · 11 ... P) + 1 

is certainly divisible by a prime. Let us take-this is the 
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idea-any prime divisor of Q (for instance, the smallest 
one) for N. (Of course, if Q happens to be a prime, then 
N = Q.) Obviously, Q divided by any of the primes 2, 3, 
5, ... P leaves the remainder 1 and, therefore, none of 
these numbers can be N which is a divisor of Q. But that 
is all we need: N is a prime, and different from all 
hitherto found primes 2, 3, 5, 7, 11, ... P. 

This proof gives a definite procedure of prolonging 
again and again the series of primes, without limit. Noth­
ing is indirect in it, no impossible situation needs to be 
considered. Yet, fundamentally, it is the same as our 
former indirect proof which we have succeeded in con­
verting. 

Redundant. See CONDITION. 

Routine problem may be called the problem to solve 
the equation x2 - 3x + 2 = o if the solution of the gen­
eral quadratic equation was explained and illustrated 
before so that the student has nothing to do but to sub­
stitute the numbers -3 and 2 for certain letters which 
appear in the general solution. Even if the quadratic 
equation was not solved generally in "letters" but half 
a dozen similar quadratic equations with numerical co­
efficients were solved just before, the problem should 
be called a "routine problem." In general, a problem is 
a "routine problem" if it can be solved either by substi­
tuting special data into a formerly solved general prob­
lem, or by following step by step, without any trace of 
originality, some well-worn conspicuous example. Setting 
a routine problem, the teacher thrusts under the nose of 
the student an immediate and decisive answer to the 
question: Do you know a related problem? Thus, the 
student needs nothing but a little care and patience in 
following a cut-and-dried precept, and he has no oppor­
tunity to use his judgment or his inventive faculties. 
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Routine problems, even many routine problems, may 
be necessary in teaching mathematics but to make the 
students do no other kind is inexcusable. Teaching the 
mechanical performance of routine mathematical opera­
tions and nothing else is well under the level of the 
cookbook because kitchen recipes do leave something to 
the imagination and judgment of the cook but mathe­
matical recipes do not. 

Rules of discovery. The first rule of discovery is to 
have brains and good luck. The second rule of discovery 
is to sit tight and wait till you get a bright idea. 

It may be good to be reminded somewhat rudely that 
certain aspirations are hopeless. Infallible rules of dis­
covery leading to the solution of all possible mathemati­
cal problems would be more desirable than the philoso­
phers' stone, vainly sought by the alchemists. Such rules 
would work magic; but there is no such thing as magic. 
To find unfailing rules applicable to all sorts of prob­
lems is an old philosophical dream; but this dream will 
never be more than a dream. 

A reasonable sort of heuristic cannot aim at unfailing 
rules; but it may endeavor to study procedures (mental 
operations, moves, steps) which are typically useful in 
solving problems. Such procedures are practiced by every 
sane person sufficiently interested in his problem. They 
are hinted by certain stereotyped questions and sugges­
tions which intelligent people put to themselves and in­
telligent teachers to their students. A collection of such 
questions and suggestions, stated with sufficient general­
ity and neatly ordered, may be less desirable than the 
philosophers' stone but can be provided. The list we 
study provides such a collection. 

Rules of style. The first rule of style 1s to have some­
thing to say. The second rule of style is to control your-
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self when, by chance, you have two things to say; say first 
one, then the other, not both at the same time. 

Rules of teaching. The first rule of teaching is to know 
what you are supposed to teach. The second rule of 
teaching is to know a little more than what you are 
supposed to teach. 

First things come first. The author of this book does 
not tl'ink that all rules of conduct for teachers are com­
pletely useless; otherwise, he would not have dared to 
write a whole book about the conduct of teachers and 
students. Yet it should not be forgotten that a teacher of 
mathematics should know some mathematics, and that a 
teacher wishing to impart the right attitude of mind 
toward problems to his students should have acquired 
that attitude himself. 

Separate the various parts of the condition. Our first 
duty is to understand the problem. Having understood 
the problem as a whole, we go into detail. We consider 
its principal parts, the unknown, the data, the condition, 
each by itself. When we have these parts well in mind 
but no particularly helpful idea has yet occurred to us, 
we go into further detail. We consider the various data, 
each datum by itself. Having understood the condition 
as a whole, we separate its various parts, and we consider 
each part by itself. 

We see now the role of the suggestion that we have to 
discuss here. It tends to provoke a step that we have to 
take when we are trying to see the problem distinctly 
and have to go into finer and finer detail. It is a step in 
DECOMPOSING AND RECOMBINING. 

Separate the various parts of the condition. Can you 
write them down? We often have opportunity to ask this 
question when we are SETTING UP EQUATIONS. 
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Setting up equations is like translation from one lan­
guage into another (NOTATION, 1). This comparison, used 
by Newton in his Arithmetica Universalis, may help to 
clarify the nature of certain difficulties often felt both 
by students and by teachers. 

1. To set up equations means to express in mathemati­
cal symbols a condition that is stated in words; it is 
translation from ordinary language into the language of 
mathematical formulas. The difficulties which we may 
have in setting up equations are difficulties of translation. 

In order to translate a sentence from English into 
French two things are necessary. First, we must under­
stand thoroughly the English sentence. Second, we must 
be familiar with the forms of expression peculiar to the 
French language. The situation is very similar when we 
attempt to express in mathematical symbols a condition 
proposed in words. First, we must understand thoroughly 
the condition. Second, we must be familiar with the 
forms of mathematical expression. 

An English sentence is relatively easy to translate into 
French if it can be translated word for word. But there 
are English idioms which cannot be translated into 
French word for word. If our sentence contains such 
idioms, the translation becomes difficult; we have to pay 
less attention to the separate words, and more attention 
to the whole meaning; before translating the sentence, 
we may have to rearrange it. 

It is very much the same in setting up equations. In 
easy cases, the verbal statement splits almost automati­
cally into successive parts, each of which can be immedi­
ately written down in mathematical symbols. In more 
difficult cases, the condition has parts which cannot be 
immediately translated into mathematical symbols. If 
this is so, we must pay less attention to the verbal state­
ment, and concentrate more upon the meaning. Before 
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we start writing formulas, we may have to rearrange the 
condition, and we should keep an eye on the resources of 
mathematical notation while doing so. 

In all cases, easy or difficult, we have to understand the 
condition, to separate the various parts of the condition, 
and to ask: Can you write them down? In easy cases, we 
succeed without hesitation in dividing the condition into 
parts that can be written down in mathematical symbols; 
in difficult cases, the appropriate division of the condi­
tion is less obvious. 

The foregoing explanation should be read again after 
the study of the following examples. 

2. Find two quantities whose sum is 78 and whose 
product is 1296. 

We divide the page by a vertical line. On one side, we 
write the verbal statement split into appropriate parts. 
On the other side, we write algebraic signs, opposite to 
the corresponding part of the verbal statement. The orig­
inal is on the left, the translation into symbols on the 
right. 

Stating the problem 

in English 
Find two quantities 
whose sum is 78 and 
whose product is 1296 

in algebraic language 
x, y 
X+ y = 78 
xy = 12g6. 

In this case, the verbal statement splits almost auto­
matically into successive parts, each of which can be 
immediately written down in mathematical symbols. 

3· Find the breadth and the height of a right prism 
with square base, being given the volume, 63 cu. in., and 
the area of the surface, 102 sq. in. 

What are the unknowns? The side of the base, say x, 
and the altitude of the prism, say y. 
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What are the data? The volume, 63, and the area, 102. 

What is the condition? The prism whose base is a 
square with side x and whose altitude is y must have the 
volume 63 and the area 102. 

Separate the various parts of the condition. There are 
two parts, one concerned with the volume, the other with 
the area. 

We can scarcely hesitate in dividing the whole condi­
tion just in these two parts; but we cannot write down 
these parts "immediately." We must know how to calcu­
late the volume and the various parts of the area. Yet, if 
we know that much geometry, we can easily restate both 
parts of the condition so that the translation into equa­
tions is feasible. We write on the left hand side of the 
page an essentially rearranged and expanded statement 
of the problem, ready for translation into algebraic 
language. 

Of a right prism with 
square base 
find the side of the base 
and the altitude. 
First. The volume is given. 
The area of the base which 
is a square with side x 
and the altitude 
determine the volume 
which is their product. 
Second. The area of the 
surface is given. 
The surface consists of two 
squares with side x 
and of four rectangles, each 
with base x and altitude y, 
whose sum is the area. 

X 

y 

102 

4XY 
2X 2 + 4XY = 102. 

4· Being given the equation of a straight line and the 
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coordinates of a point, find the point which is symmetri­
cal to the given point with respect to the given straight 
line. 

This is a problem of plane analytic geometry. 
What is the unknown? A point, with coordinates, say, 

p, q. 
What is given? The equation of a straight line, say y = 

mx + n, and a point with coordinates, say, a, b. 
What is the condition? The points (a, b) and (p, q) 

are symmetrical to each other with respect to the line 
y = mx+ n. 

We now reach the essential difficulty which is to divide 
the condition into parts each of which can be expressed 
in the language of analytic geometry. The nature of this 
difficulty must be well understood. A decomposition of 
the condition into parts may be logically unobjection­
able and nevertheless useless. What we need here is a 
decomposition into parts which are fit for analytic ex­
pression. In order to find such a decomposition we must 
go back to the definition of symmetry, but keep an eye 
on the resources of analytic geometry. What is meant by 
symmetry with respect to a straight line? What geometric 
relations can we express simply in analytic geometry? We 
concentrate upon the first question, but we should not 
forget the second. Thus, eventually, we may find the de­
composition which we are going to state. 

The given point 
and the point required 
are so related that 
first, the line joining them 
is perpendicular to the 
given line, and 
second, the midpoint of 
the line joining them lies 
on the given line. 

(a, b) 
(p, q) 

q- b _ I 

p- a m 

b + q = m a + p + n. 
2 2 
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Signs of progress. As Columbus and his companions 
sailed westward across an unknown ocean they were 
cheered whenever they saw birds. They regarded a bird 
as a favorable sign, indicating the nearness of land. But 
in this they were repeatedly disappointed. They watched 
for other signs too. They thought that floating seaweed 
or low banks of cloud might indicate land, but they were 
again disappointed. One day, however, the signs multi­
plied. On Thursday, the 11th of October, 1492, "they saw 
sandpipers, and a green reed near the ship. Those of the 
caravel Pinta saw a cane and a pole, and they took up 
another small pole which appeared to have been worked 
by iron; also another bit of cane, a land-plant, and a 
small board. The crew of the caravel Nifia also saw signs 
of land, and a small branch covered with berries. Every· 
one breathed afresh and rejoiced at these signs." And in 
fact the next day they sighted land, the first island of a 
New World. 

Our undertaking may be important or unimportant, 
our problem of any kind-when we are working in­
tensely, we watch eagerly for signs of progress as Co­
lumbus and his companions watched for signs of ap­
proaching land. We shall discuss a few examples in order 
to understand what can be reasonably regarded as a sign 
of approaching the solution. 

1. Examp!es. I have a chess problem. I have to mate 
the black king in, say, two moves. On the chessboard 
there is a white knight, quite a distance from the black 
king, that is apparently superfluous. What is it good for? 
I am obliged to leave this question unanswered at first. 
Yet after various trials, I hit upon a new move and ob­
serve that it would bring that apparently superfluous 
white knight into play. This observation gives me a new 
hope. I regard it as a favorable sign: that new move has 
some chance to be the right one. Why? 
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In a well-constructed chess problem there is no super­

fluous piece. Therefore, we have to take into account all 
chessmen on the board; we have to use all the data. The 
correct solution does certainly use all the pieces, even 
that apparently superfluous white knight. In this last 
respect, the new move that I contemplate agrees with the 
correct move that I am supposed to find. The new move 
looks like the correct move; it might be the correct 
move. 

It is interesting to consider a similar situation in a 
mathematical problem. My task is to express the area of a 
triangle in terms of its three sides, a, b, and c. I have 
already made some sort of plan. I know, more or less 
clearly, which geometrical connections I have to take 
into account and what sort of calculations I have to per­
form. Yet I am not quite sure whether my plan will work. 
If now, proceeding along the line prescribed by my plan, 
I observe that the quantity 

.y'b+c-a 

enters into the expression of the area I am about to con­
struct, I have good reason to be cheered. Why? 

In fact, it must be taken into account that the sum of 
any two sides of a triangle is greater than the third side. 
This involves a certain restriction. The given lengths, a, 
b, and c cannot be quite arbitrary; for instance, b + c 
must be greater than a. This is an essential part of the 
condition, and we should use the whole condition. If 
b + c is not greater than a the formula I seek is bound 
to become illusory. Now, the square root displayed above 
becomes imaginary if b + c - a is negative-that is, if 
b + c is less than a-and so the square root becomes unfit 
to represent a real quantity under just those circum­
stances under which the desired expression is bound to 
become illusory. Thus my formula, into which that 
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square root enters, has an important property in com­
mon with the true formula for the area. My formula 
looks like the true formula; it might be the true for­
mula. 

Here is one more example. Some time ago, I wished to 
prove a theorem in solid geometry. Without much 
trouble I found a first remark that appeared to be per­
tinent; but then I got stuck. Something was missing to 
finish the proof. When I gave up that day I had a much 
clearer notion than at the outset how the proof should 
look, how the gap should be filled; but I was not able to 
fill it. The next day, after a good night's rest, I looked 
again into the question and soon hit upon an analogous 
theorem in plane geometry. In a flash I was convinced 
that now I had got hold of the solution and I had, I 
think, good reason too to be convinced. Why? 

In fact, analogy is a great guide. The solution of a 
problem in solid geometry often depends on an anal­
ogous problem in plane geometry (see ANALOGY, 3-7). 
Thus, in my case, there was a chance from the outset that 
the desired proof would use as a lemma some theorem 
of plane geometry of the kind which actually came to my 
mind. "This theorem looks like the lemma I need; it 
might be the lemma I need" -such was my reasoning. 

If Columbus and his men had taken the trouble to 
reason explicitly, they would have reasoned in some simi­
lar way. They knew how the sea looks near the shore. 
They knew that, more often than on the open sea, there 
are birds in the air, coming from the land, and objects 
floating in the water, detached from the seashore. Many 
of the men must have observed such things when from 
former voyages they had returned to their home port. 
The day before that memorable date on which they 
sighted the island of San Salvador, as the floating objects 
in the water became so frequent, they thought: "It looks 
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as if we were approaching some land; we may be ap­
proaching some land" and "everyone breathed afresh and 
rejoiced at these signs." 

2. Heuristic character of signs of progress. Let us insist 
upon a point which is perhaps already clear to everyone; 
but it is very important and, therefore, it should be com­
pletely clear. 

The type of reasoning illustrated by the foregoing ex­
amples deserves to be noticed and taken into account 
seriously, although it yields only a plausible indication 
and not an unfailing certainty. Let us restate pedan­
tically, at full length, in rather unnatural detail, one of 
these reasonings: 

If we are approaching land, we often see birds. 
Now we see birds. 
Therefore, probably, we are approaching land. 

Without the word "probably" the conclusion would 
be an outright fallacy. In fact, Columbus and his com­
panions saw birds many times but were disappointed 
later. Just once came the day on which they saw sand­
pipers followed by the day of discovery. 

With the word "probably" the conclusion is reason­
able and natural but by no means a proof, a demonstra­
tive conclusion; it is only an indication, a heuristic 
suggestion. It would be a great mistake to forget that 
such a conclusion is only probable, and to regard it as 
certain. But to disregard such conclusions entirely would 
be a still greater mistake. If you take a heuristic conclu­
sion as certain, you may be fooled and disappointed; but 
if you neglect heuristic conclusions altogether you will 
make no progress at all. The most important signs of 
progress are heuristic. Should we trust them? Should we 
follow them? Follow, but keep your eyes open. Trust but 
look. And never renounce your judgment. 
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3· Clearly expressible signs. We can look at the fore­
going examples from another point of view. 

In one of these examples, we regarded as a favorable 
sign that we succeeded in bringing into play a datum not 
used before (the white knight) . We were quite right to 
so regard it. In fact, to solve a problem is, essentially, to 
find the connection between the data and the unknown. 
Moreover we should, at least in well-stated problems, use 
all the data, connect each of them with the unknown. 
Thus, bringing one more datum into play is quite prop­
erly felt as progress, as a step forward. 

In another example, we regarded as a favorable sign 
that an essential clause of the condition was appropri­
ately taken into account by our formula. We were quite 
right to so regard it. In fact, we should use the whole 
condition. Thus, taking into account one more clause of 
the condition is justly felt as progress, as a move in the 
right direction. 

In still another example, we regarded as a favorable 
sign the emergence of a simpler analogous problem. This 
also is justified. Indeed, analogy is one of the main 
sources of invention. If other means fail, we should try 
to imagine an analogous problem. Therefore, if such a 
problem emerges spontaneously, by its own accord, we 
naturally feel elated; we feel that we are approaching the 
solution. 

After these examples, we can now easily grasp the gen­
eral ide4. There are certain mental operations typically 
useful in solving problems. (The most usual operations 
of this kind are listed in this book.) If such a typical 
operation succeeds (if one more datum is connected with 
the unknown-one more clause of the condition is taken 
into account-a simpler analogous problem is intro­
duced) its success is felt as a sign of progress. Having 
understood this essential point, we can express with some 
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clearness the nature of still other signs of progress. All 
we have to do is to read down our list and look at the 
various questions and suggestions from our newly ac­
quired point of view. 

Thus, understanding clearly the nature of the un­
known means progress. Clearly disposing the various data 
so that we can easily recall any one also means progress. 
Visualizing vividly the condition as a whole may mean an 
essential advance; and separating the condition into ap­
propriate parts may be an important step forward. When 
we have found a figure that we can easily imagine, or a 
notation that we can easily retain, we can reasonably be­
lieve that we have made some progress. Recalling a 
problem related to ours and solved before may be a de­
cisive move in the right direction. 

And so on, and so forth. To each mental operation 
clearly conceived corresponds a certain sign clearly ex­
pressible. Our list, appropriately read, lists also signs of 
progress. 

Now, the questions and suggestions of our list are 
simple, obvious, just plain common sense. This has been 
said repeatedly and the same can be said of the con­
nected signs of progress we discuss here. To read such 
signs no occult science is needed, only a little common 
sense and, of course, a little experience. 

4· Less clearly expressible signs. When we work in­
tently, we feel keenly the pace of our progress: when it is 
rapid we are elated; when it is slow we are depressed. We 
feel such differences quite clearly without being able to 
point out any distinct sign. Moods, feelings, general 
aspects of the situation serve to indicate our progress. 
They are not easy to express. "It looks good to me," or 
"It is not so good," say the unsophisticated. More sophis­
ticated people express themselves with some nuance: 
"This is a well-balanced plan," or "No, something is still 
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lacking and that spoils the harmony." Yet behind primi­
tive or vague expressions there is an unmistakable feeling 
which we follow with confidence and which leads us 
frequently in the right direction. If such feeling is very 
strong and emerges suddenly, we speak of inspiration. 
People usually cannot doubt their inspirations and are 
sometimes fooled by them. In fact, we should treat guid­
ing feelings and inspirations just as we treat the more 
clearly expressible signs of progress which we have con­
sidered before. Trust, but keep your eyes open. 

Always follow your inspiration-with a grain of doubt. 
[What is the nature of those guiding feelings? Is there 

some less vague meaning behind words of such aesthetic 
nuances as "well-balanced," or "harmonious"? These 
questions may be more speculative than practical, but 
the present context indicates answers which perhaps de­
serve to be stated: Since the more clearly expressible 
signs of progress are connected with the success or failure 
of certain rather definite mental operations, we may 
suspect that our less clearly expressible guiding feelings 
may be similarly connected with other, more obscure, 
mental activities-perhaps with activities whose nature 
is more "psychological" and less "logical."] 

5· How signs help. I have a plan. I see pretty clearly 
where I should begin and which steps I should take first. 
Yet I do not quite see the lay-out of the road farther on; 
I am not quite certain that my plan will work; and, in 
any case, I have still a long way to go. Therefore, I start 
out cautiously in the direction indicated by my plan and 
keep a lookout for signs of progress. If the signs are rare 
or indistinct, I become more hesitant. And if for a long 
time they fail to appear altogether, I may lose courage, 
turn back, and try another road. On the other hand, if 
the signs become more frequent as I proceed, if they 
multiply, my hesitation fades, my spirits rise, and I move 
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with increasing confidence, just as Columbus and his 
companions did before sighting the island of San Sal­
vador. 

Signs may guide our acts. Their absence may warn us 
of a blind alley and save us time and useless exertion; 
their presence may cause us to concentrate our effort 
upon the right spot. 

Yet signs may also be deceptive. I once abandoned a 
certain path for lack of signs, but a man who came after 
me and followed that path a little farther made an im­
portant discovery-to my great annoyance and long-last­
ing regret. He not only had more perseverance than I 
did but he also read correctly a certain sign which I had 
failed to notice. Again, I may follow a road cheerfully, 
encouraged by favorable signs, and run against an un­
suspected and insurmountable obstacle. 

Yes, signs may misguide us in any single case, but they 
guide us right in the majority of them. A hunter may 
misinterpret now and then the traces of his game but he 
must be right on the average, otherwise he could not 
make a living by hunting. 

It takes experience to interpret the signs correctly. 
Some of Columbus's companions certainly knew by ex­
perience how the sea looks near the shore and so they 
were able to read the signs which suggested that they 
were approaching land. The expert knows by experience 
how the situation looks and feels when the solution is 
near and so he is able to read the signs which indicate 
that he is approaching it. The expert knows more signs 
than the inexperienced, and he knows them better; his 
main advantage may consist in such knowledge. An ex­
pert hunter notices traces of game and appraises even 
their freshness or staleness where the inexperienced one 
is unable to see anything. 

The main advantage of the exceptionally talented may 
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consist in a sort of extraordinary mental sensibility. With 
exquisite sensibility, he feels subtle signs of progress or 
notices their absence where the less talented are unable 
to perceive a difference. 

(6. Heuristic syllogism. In section 2 we came across a 
mode of heuristic reasoning that deserves further consid­
eration and a technical term. We begin by restating that 
reasoning in the following form: 

If we are approaching land, we often see birds. 
Now we see birds. 

Therefore, it becomes more credible that we are ap­
proaching land. 

The two statements above the horizontal line may be 
called the premises, the statement under the line, the 
conclusion. And the whole pattern of reasoning may be 
termed a heuristic syllogism. 

The premises are stated here in the same form as in 
section 2, but the conclusion is more carefully worded. 
An essential circumstance is better emphasized. Colum­
bus and his men conjectured from the beginning that 
they would eventually find land sailing westward; and 
they must have given some credence to this conjecture, 
otherwise they would not have started out at all. As they 
proceeded, they related every incident, major or minor, 
to their dominating question: "Are we approaching 
land?'' Their confidence rose and fell as events occurred 
or failed to occur, and each man's beliefs fluctuated more 
or less differently according to his background and char­
acter. The whole dramatic tension of the voyage is due to 
such fluctuations of confidence. 

The heuristic syllogism quoted exhibits a reasonable 
ground for a change in the level of confidence. To occa­
sion such changes is the essential role of this kind of 
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reasoning and this point is better expressed by the word­
ing given here than by the one in section 2. 

The general pattern suggested by our example can be 
exhibited thus: 

If A is true, then B is also true, as we know. 
Now, it turns out that B is true. 

Therefore, A becomes more credible. 

Still shorter: 
If A then B 

B true 

A more credible 

In this schematic statement the horizontal line stands for 
the word "therefore" and expresses the implication, the 
essential link between the premises and the conclusion.] 

[7· Nature of plausible reasoning. In this little book 
we are discussing a philosophical question. We discuss it 
as practically and informally and as far from high-brow 
modes of expression as we can, but nevertheless our 
subject is philosophical. It is concerned with the nature 
of heuristic reasoning and, by extension, with a kind of 
reasoning which is nondemonstrative although important 
and which we shall call, for lack of a better term, plau­
sible reasoning. 

The signs that convince the inventor that his idea is 
good, the indications that guide us in our everyday 
affairs, the circumstantial evidence of the lawyer, the in­
ductive evidence of the scientist, statistical evidence 
invoked in many and diverse subjects-all these kinds of 
evidence agree in two essential points. First, they do not 
have the certainty of a strict demonstration. Second, they 
are useful in acquiring essentially new knowledge, and 
even indispensable to any not purely mathematical or 
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logical knowledge, to any knowledge concerned with the 
physical world. We could call the reasoning that under­
lies this kind of evidence "heuristic reasoning" or "induc­
tive reasoning" or (if we wish to avoid stretching the 
meaning of existing terms) "plausible reasoning." We 
accept here the last term. 

The heuristic syllogism introduced in the foregoing 
may be regarded as the simplest and most widespread 
pattern of plausible reasoning. It reminds us of a classi­
cal pattern of demonstrative reasoning, of the so-called 
"modus tollens of hypothetical syllogism." We exhibit 
here both patterns side by side: 

Demonstrative 
If A then B 

B false 

A false 

Heuristic 
If A then B 

B true 

A more credible 

The comparison of these patterns may be instructive. It 
may grant us an insight, not easily obtainable elsewhere, 
into the nature of plausible (heuristic, inductive) rea­
soning. 

Both patterns have the same first premise: 

If A then B. 

They differ in the second premise. The statements: 

B false B true 

are exactly opposite to each other but they are of "simi­
lar logical nature," they are on the same "logical level." 
The great difference arises after the premises. The con­
clusions 

A false A more credible 

are on different logical levels and their relations to their 
respective premises are of a different logical nature. 

The conclusion of the demonstrative syllogism is of the 
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same logical nature as the premises. Moreover, this con­
clusion is fully expressed and is fully supported by the 
premises. If my neighbor and I agree to accept the prem­
ises, we cannot reasonably disagree about accepting also 
the conclusion, however different our tastes or other 
convictions may be. 

The conclusion of the heuristic syllogism differs from 
the premises in its logical nature; it is more vague, not so 
sharp, less fully expressed. This conclusion is comparable 
to a force, has direction and magnitude. It pushes us in a 
certain direction: A becomes more credible. The conclu­
sion also has a certain strength: A may become much 
more credible, or just a little more credible. The conclu­
sion is not fully expressed and is not fully supported by 
the premises. The direction is expressed and is implied 
by the premises, the magnitude is not. For any reasonable 
person, the premises involve that A becomes more cred­
ible (certainly not less credible). Yet my neighbor and I 
can honestly disagree how much more credible A be­
comes, since our temperaments, our backgrounds, and 
our unstated reasons may be different. 

In the demonstrative syllogism the premises constitute 
a full basis on which the conclusion rests. If both prem­
ises stand, the conclusion stands too. If we receive some 
new information that does not change our belief in the 
premises, it cannot change our belief in the conclusion. 

In the heuristic syllogism the premises constitute only 
one part of the basis on which the conclusion rests, the 
fully expressed, the "visible" part of the basis; there is an 
unexpressed, invisible part, formed by something else, by 
inarticulate feelings perhaps, or by unstated reasons. In 
fact, it can happen that we receive some new information 
that leaves our belief in both premises completely intact, 
but influences the trust we put in A in a way just oppo­
site to that expressed in the conclusion. To find A more 
plausible on the ground of the premises of our heuristic 
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syllogism is only reasonable. Yet tomorrow I may find 
grounds, not interfering at all with these premises, that 
make A appear less plausible, or even definitively refute 
it. The conclusion may be shaken and even overturned 
completely by commotions in the invisible parts of its 
foundation, although the premises, the visible part, stand 
quite firm. 

These remarks seem to make somewhat more under­
standable the nature of heuristic, inductive, and other 
sorts of not demonstrative plausible reasoning, which 
appear so baffling and elusive when approached from the 
point of view of purely demonstrative logic. Many more 
concrete examples, the consideration of other kinds of 
heuristic syllogism, and an investigation of the concept 
of probability and other allied concepts seem to be nec­
essary to complete the approach here chosen; cf. the 
author's Mathematics and Plausible Reasoning.] 

Heuristic reasons are important although they prove 
nothing. To clarify our heuristic reasons is also impor­
tant although behind any reason clarified there are many 
others that remain obscure and are perhaps still more 
important. 

Specialization is passing from the consideration of a 
given set of objects to that of a smaller set, or of just one 
object, contained in the given set. Specialization is often 
useful in the solution of problems. 

1. Example. In a triangle, let r be the radius of the 
inscribed circle, R the radius of the circumscribed circle, 
and H the longest altitude. Then 

r+R <H. 

We have to prove (or disprove) this theorem9; we 
have a "problem to prove." 

9 The American Mathematical Monthly, vol. 50 (1943), p. 124 and 
vol. 51 (1944), pp. 234-236. 
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The proposed theorem is of an unusual sort. We can 
scarcely remember any theorem about triangles with a 
similar conclusion. If nothing else occurs to us, we may 
test some special case of this unfamiliar assertion. Now, 
the best known special triangle is the equilateral triangle 
for which 

H 
r =-

3 
R = 2H 

3 

so that, in this case, the assertion is correct. 
If no other idea presents itself, we may test the more 

extended special case o£ isosceles triangles. The form of 
an isosceles triangle varies with the angle at the vertex 
and there are two extreme (or limiting) cases, the one in 
which the angle at the vertex becomes o0 , and the other 
in which it becomes 180°. In the first extreme case the 
base of the isosceles triangle vanishes and visibly 

r=o 
I R=-H 
2 

thus, the assertion is verified. In the second limiting case, 
however, all three heights vanish and 

r = o R = oo H= o. 

The assertion is not verified. We have proved that the 
proposed theorem is false, and so we have solved our 
problem. 

By the way, it is clear that the assertion is also false 
for very flat isosceles triangles whose angle at the vertex 
is nearly 180° so that we may "officially" disregard the 
extreme cases whose consideration may appear as not 
quite "orthodox." 

2. "L'exception confirme la regie." "The exception 
proves the rule." We must take this widely known saying 
as a joke, laughing at the laxity of a certain sort of logic. 
If we take matters seriously, one exception is enough, of 
course, to refute irrefragably any would-be rule or gen-
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eral statement. The most usual and, in some respects, the 
best method to refute such a statement consists precisely 
in exhibiting an object that does not comply with it; 
such an object is called a counter-example by certain 
writers. 

The allegedly general statement is concerned with a 
certain set of objects; in order to refute the statement we 
specialize, we pick out from the set an object that does 
not comply with it. The foregoing example (under 1) 
shows how it is done. We may examine at first any sim­
ple special case, that is, any object chosen more or less at 
random which we can easily test. If the test shows that 
the case is not in accordance with the general statement, 
the statement is refuted and our task finished. If, how­
ever, the object examined complies with the statement 
we may possibly derive some hint from its examination. 
We may receive the impression that the statement could 
be true, after all, and some suggestion in which direction 
we should seek the proof. Or, we may receive, as in our 
example under 1, some suggestion in which direction we 
should seek the counter-example, that is, which other 
special cases should we test. We may modify the case we 
have just examined, vary it, investigate some more ex­
tended special case, look around for extreme cases, as 
exemplified under 1. 

Extreme cases are particularly instructive. If a general 
statement is supposed to apply to all mammals it must 
apply even to such an unusual mammal as the whale. 
Let us not forget this extreme case of the whale. Exam­
ining it, we may refute the general statement; there is a 
good chance for that, since such extreme cases are apt to 
be overlooked by the inventors of generalizations. If, 
however, we find that the general statement is verified 
even in the extreme case, the inductive evidence derived 
from this verification will be strong, just because the 
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prospect of refutation was strong. Thus, we are tempted 
to reshape the saying from which we started: "Prospective 
exceptions test the rule." 

3· Example. Given the speeds of two ships and their 
positions at a certain moment; each ship steers a recti­
linear course with constant speed. Find the distance of 
the two ships when they are nearest to each other. 

What is the unknown? The shortest distance between 
two moving bodies. The bodies have to be considered as 
material points. 

What are the data? The initial positions of the moving 
material points, and the speed of each. These speeds are 
constant in amount and direction. 

p A 
FIG. 19 

What is the condition? The distance has to be ascer­
tained when it is the shortest, that is, at the moment 
when the two moving points (ships) are nearest to each 
other. 

Draw a figure. Introduce suitable notation. In Fig. tg, 
the points A and B mark the given initial positions of 
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the two ships. The directed line-segments (vectors) AP 
and BQ represent the given speeds so that the first ship 
proceeds along the straight line through the points A and 
P, and covers the distance AP in unit time. The second 
ship travels similarly along the straight line BQ. 

What is the unknown? The shortest distance of the two 
ships, the one traveling along AP and the other along 
BQ. 

It is clear by now what we should find; yet, if we wish 
to use only elementary means, we may be still in the dark 
how we should find it. The problem is not too easy and 
its difficulty has some peculiar nuance which we may try 
to express by saying that "there is too much variety." The 
initial positions, A and B, and the speeds, AP and BQ, 
can be given in various ways; in fact, the four points A, 
B, P, Q may be chosen arbitrarily. Now, whatever the 
data may be, the required solution must apply and we do 
not see yet how to fit the same solution to all these pos­
sibilities. Out of such feeling of "too much variety" this 
question and answer may eventually emerge: 

Could you imagine a more accessible related problem? 
A more special problem? Of course, there is the extreme 
special case in which one of the speeds vanishes. Yes, the 
ship in B may lay at anchor, Q may coincide with B. 
The shortest distance from the ship at rest to the moving 
ship is the perpendicular to the straight line along which 
the la tter moves. 

4· If the foregoing idea emerges with the premonition 
that there is more ahead and with the feeling that that 
extreme special case (which could appear as too simple 
to be relevant) has some role to play-then it is a bright 
idea indeed. 

H ere is a problem related to yours_, that specialized 
problem you just solved. Could you use it? Could you use 
its result? Should you introduce some auxiliary elem ent 
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in order to make its use possible? It should be used, but 
how? How cot.ld the result of the case in which B is at 
rest be used in the case in which B is moving? Rest is a 
special case of motion. And motion is relative-and, 
therefore, whatever the given velocity of B may be I can 
consider B as being at rest! Here is the idea more clearly: 
If I impart to the whole system, consisting of both ships, 
the same uniform motion, the relative positions do not 
change, the relative distances remain the same, and so 
does especially the shortest relative distance of the two 
ships required by the problem. Now, I can impart a 
motion that reduces the speed of one of the ships to zero, 

p A 
FIG. 20 

and so reduces the general case of the problem to the 
special case just solved. Let me add a velocity, opposite 
to BQ but of the same amount, both to BQ and to AP. 
This is the auxiliary element that makes the use of the 
special result possible. 

See Fig. 20 for the construction of the shortest distance, 
BS. 
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5· The foregoing solution (under 3, 4) has a logical 
pattern that deserves to be analyzed and remembered. 

In order to solve our original problem (under 3, :first 
lines) we have solved first another problem which we 
may call appropriately the auxiliary problem (under 3, 
last lines). This auxiliary problem is a special case of the 
original problem (the extreme special case in which one 
of the two ships is at rest). The original problem was 
proposed, the auxiliary problem invented in the course 
of the solution. The original problem looked hard, the 
solution of the auxiliary problem was immediate. The 
auxiliary problem was, as a special case, in fact much less 
ambitious than the original problem. How is it then pos­
sible that we were able to solve the original problem on 
the basis of the auxiliary problem? Because in reducing 
the original problem to the auxiliary problem, we added 
a substantial supplementary remark (on relativity of 
motion). 

We succeeded in solving our original problem thanks 
to two remarks. First, we invented an advantageous aux­
iliary problem. Second, we discovered an appropriate 
supplementary remark to pass from the auxiliary prob­
lem to the original problem. We solved the proposed 
problem in two steps as we might cross a creek in two 
steps provided we were lucky enough to discover an 
appropriate stone in the middle which could serve as a 
momentary foothold. 

To sum up, we used the less difficult, less ambitious, 
special, auxiliary problem as a stepping stone in solving 
the more difficult, more ambitious, general, original 
problem. 

6. Specialization has many other uses which we can­
not discuss here. It may be just mentioned that it can be 
useful in testing the solution (cAN YOU CHECK THE RE­

SULT? 2). 



Subconscious Work 197 

A somewhat primitive kind of specialization is often 
useful to the teacher. It consists in giving some concrete 
interpretation to the abstract mathematical elements of 
the problem. For instance, if there is a rectangular paral­
lelepiped in the problem, the teacher may take the class­
room in which he talks as example (section 8). In solid 
analytic geometry, a corner of the classroom may serve 
as the origin of coordinates, the floor and two walls as 
coordinate planes, two horizontal edges of the room and 
one vertical edge as coordinate axes. Explaining the 
notion of a surface of revolution, the teacher draws a 
curve with chalk on the door and opens it slowly. These 
are certainly simple tricks but nothing should be omitted 
that has some chance to bring home mathematics to the 
students: Mathematics being a very abstract science 
should be presented very concretely. 

Subconscious work. One evening I wished to discuss 
with a friend a certain author but I could not remember 
the author's name. I was annoyed, because I remembered 
fairly well one of his stories. I remembered also some 
story about the author himself which I wanted to tell; I 
remembered, in fact, everything except the name. Re­
peatedly, I tried to recollect that name but all in vain. 
The next morning, as soon as I thought of the annoy­
ance of the evening before, the name occurred to me 
without any effort. 

The reader, very likely, remembers some similar ex­
perience of his own. And, if he is a passionate problem­
solver, he has probably had some similar experience with 
problems. It often happens that you have no success at 
all with a problem; you work very hard yet without find­
ing anything. But when you come back to the problem 
after a night's rest, or a few days' interruption, a bright 
idea appears and you solve the problem easily. The 
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nature of the problem matters little; a forgotten word, 
a difficult word from a crossword-puzzle, the beginning 
of an annoying letter, or the solutio11 of a mathematical 
problem may occur in this way. 

Such happenings give the impression of subconscious 
work. The fact is that a problem, after prolonged ab­
sence, may return into consciousness essentially clarified, 
much nearer to its solution than it was when it dropped 
out of consciousness. Who clarified it, who brought it 
nearer to the solution? Obviously, oneself, working at it 
subconsciously. It is difficult to give any other answer; 
although psychologists have discovered the beginnings 
of another answer which may turn out some day to be 
more satisfactory. 

Whatever may or may not be the merits of the theory 
of subconscious work, it is certain that there is a limit 
beyond which we should not force the conscious reflec­
tion. There are certain moments in which it is better to 
leave the problem alone for a while. "Take counsel of 
your pillow" is an old piece of advice. Allowing an inter­
val of rest to the problem and to ourselves, we may 
obtain more tomorrow with less effort. "If today will not, 
tomorrow may" is another old saying. But it is desirable 
not to set aside a problem to which we wish to come back 
later without the impression of some achievement; at 
least some little point should be settled, some aspect of 
the question somewhat elucidated when we quit working. 

Only such problems come back improved whose solu­
tion we passionately desire, or for which we have worked 
with great tension; conscious effort and tension seem to 
be necessary to set the subconscious work going. At any 
rate, it would be too easy if it were not so; we could 
solve difficult problems just by sleeping and waiting for 
a bright idea. 

Past ages regarded a sudden good idea as an inspira-
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tion, a gift of the gods. You must deserve such a gift by 
work, or at least by a fervent wish.lO 

Symmetry has two meanings, a more usual, particular, 
geometric meaning, and a less usual, general, logical 
meamng. 

Elementary solid geometry considers two kinds of sym­
metry, symmetry with respect to a plane (called plane of 
symmetry), and symmetry with respect to a point (called 
center of symmetry). The human body appears to be 
fairly symmetrical but in fact it is not; many interior 
organs are quite unsymmetrically disposed. A statue may 
be completely symmetrical with respect to a vertical 
plane so that its two halves appear completely "inter­
changeable." 

In a more general acceptance of the word, a whole is 
termed symmetric if it has interchangeable parts. There 
are many kinds of symmetry; they differ in the number 
of interchangeable parts, and in the operations which 
exchange the parts. Thus, a cube has high symmetry; its 
6 faces are interchangeable with each other, and so are 
its 8 vertices, and so are its 12 edges. The expression 

yz + zx + xy 

is symmetric; any two of the three letters x, y, z can be 
interchanged without changing the expression. 

Symmetry, in a general sense, is important for our 
subject. If a problem is symmetric in some ways we may 
derive some profit from noticing its interchangeable 
parts and it often pays to treat those parts which play 
the same role in the same fashion (see AUXILIARY ELE­

MENTS, 3)• 

10 For an all-round discussion of "unconscious thinking" see 
Jacques Hadamard, The Psychology of Invention in the Mathemat­
ical Field. 
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Try to treat symmetrically what is symmetrical, and do 
not destroy wantonly any natural symmetry. However, 
we are sometimes compelled to treat unsymmetrically 
what is naturally symmetrical. A pair of gloves is cer­
tainly symmetrical; nevertheless, nobody handles the pair 
quite symmetrically, nobody puts on both gloves at the 
same time, but one after the other. 

Symmetry may also be useful in checking results; see 
section 14. 

Terms, old and new, describing the activity of solving 
problems are often ambiguous. The activity itself is 
familiar to everybody and it is often discussed but, as 
other mental activities, it is difficult to describe. In the 
absence of a systematic study there are no technical terms 
to describe it, and certain usual half-technical terms 
often add to the confusion because they are used in dif­
ferent meanings by different authors. 

The following short list includes a few new terms used 
and a few old terms avoided in the present study, and 
also some old terms retained despite their ambiguity. 

The reader may be confused by the following discus­
sion of terminology unless his notions are well anchored 
in examples. 

1. Analysis is neatly defined by PAPPUS, and it is a use­
ful term, describing a typical way of devising a plan, 
starting from the unknown (or the conclusion) and 
working backwards, toward the data (or the hypothe­
sis). Unfortunately, the word has acquired very different 
meanings (for instance, of mathematical, chemical, logi­
cal analysis) and therefore, it is regretfully avoided in 
the present study. 

2. Condition links the unknown of a "problem to 
find" to the data (see PROBLEMS TO FIND, PROBLEMS TO 

PROVE, 3) . In this meaning, it is a clear, useful and un-
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avoidable term. It is often necessary to decompose the 
condition into several parts [into parts (I) and (II) in 
the examples DECOMPOSING AND RECOMBINING, 7• 8). Now, 
each part of the condition is usually called a condition. 
This ambiguity which is sometimes embarrassing could 
be easily avoided by introducing some technical term to 
denote the parts of the whole condition; for instance, 
such a part could be called a "clause." 

3· Hypothesis denotes an essential part of a mathemat­
ical theorem of the more usual kind (see PROBLEMS TO 

FIND, PROBLEMS TO PROVE, 4) . The term, in this meaning, 
is perfectly clear and satisfactory. The difficulty is that 
each part of the hypothesis is also called a hypothesis so 
that the hypothesis may consist of several hypotheses. 
The remedy would be to call each part of the whole 
hypothesis a "clause," or something similar. (Compare 
the foregoing remark on "condition.") 

4· Principal parts of a problem are defined in PROB­

LEMs TO FIND, PROBLEMS TO PROVE, 3• 4· 
5· Problem to find, problem to prove are a pair of new 

terms, introduced regretfully to replace historical terms 
whose meaning, however, is confused beyond redemption 
by current usage. In Latin versions of Greek mathemati­
cal texts, the common name for both kinds of problems 
is "propositio"; a "problem to find" is called "problema," 
and a "problem to prove" "theorema." In old-fashioned 
mathematical language, the words proposition, problem, 
theorem have still this "Euclidean" meaning, but this is 
completely changed in modern mathematical language; 
this justifies the introduction of new terms. 

6. Progressive reasoning was used in various meanings 
by various authors, and in the old meaning of "synthesis" 
(see 9) by some authors. The latter usage is defensible 
but the term is avoided here. 

7· Regressive reasoning was used in the old meaning of 
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"analysis" by some authors (compare 1, 6). The term is 
defensible but avoided here. 

8. Solution is a completely clear term if taken in its 
purely mathematical meaning; it denotes any object satis­
fying the condition of a "problem to find." Thus, the 
solutions of the equation x2 - 3x + 2 = o are its roots, 
the numbers 1 and 2. Unfortunately, the word has also 
other meanings which are not purely mathematical and 
which are used by mathematicians along with its mathe­
matical meaning. Solution may also mean the "process of 
solving the problem" or the "work done in solving the 
problem"; we use the word in this meaning when we talk 
about a "difficult solution." Solution may also mean the 
result of the work done in solving the problem; we may 
use the word in this meaning when we talk about a 
"beautiful solution." Now, it may happen that we have to 
talk in the same sentence about the object satisfying the 
condition of the problem, about the work of obtaining it, 
and about the result of this work; if we yield to the temp­
tation to call all three things "solution" the sentence 
cannot be too clear. 

g. Synthesis is used by PAPPUS in a well defined mean­
ing which would deserve to be conserved. The term is, 
however, regretfully avoided in the present study, for the 
same reasons as its counterpart "analysis" (see under 1 ). 

Test by dimension is a well-known, quick and efficient 
means to check geometrical or physical formulas. 

1. In order to recall the operation of the test, let us 
consider the frustum of a right circular cone. Let 

R be the radius of the lower base, 
r the radius of the upper base, 
h the altitude of the frustum, 
S the area of the lateral surface of the frustum. 

If R, r, h are given, S is visibly determined. We find the 
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expression 

S = 1r(R + rhi(R- r)2 + h2 

to which we wish to apply the test by dimension. 
The dimension of a geometric quantity is easily visible. 

Thus, R, r, h are lengths, they are measured in centi­
meters if we use scientific units, their dimension is em. 
The area S is measured in square centimeters, its dimen­
sion is em2. Now, 1r = 3.14159 ... is a mere number; if 
we wish to ascribe a dimension to a purely numerical 
quantity it must be emo = 1. 

Each term of a sum must have the same dimension 
which is also the dimension of the sum. Thus, R, r, and 
R + r have the same dimension, namely em. The two 
terms (R - r)2 and h2 have the same dimension (as they 
must), em2. 

The dimension of a product is the product of the di­
mensions of its factors, and there is a similar rule about 
powers. Replacing the quantities by their dimensions on 
both sides of the formula that we are testing, we obtain 

cm2 = I ·em ·ycm2• 

This being visibly so, the test could not detect any error 
in the formula. The formula passed the test. 

For other examples, see section 14, and CAN YOU CHECK 

THE RESULT? 2. 

2. We may apply the test by dimension to the final 
result of a problem or to intermediary results, to our own 
work or to the work of others (very suitable in tracing 
mistakes in examination papers), and also to formulas 
that we recollect and to formulas that we guess. 

If you recollect the formulas 41r1'2 and 47r1's I 3 for the 
area and the volume of the sphere, but are not quite sure 
which is which, the test by dimension easily removes the 
doubt. 

3· The test by dimension is even more important in 
physics than in geometry. 
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Let us consider a "simple" pendulum, that is, a small 
heavy body suspended by a wire whose length we regard 
as invariable and whose weight we regard as negligible. 
Let l stand for the length of the wire, g for the gravita­
tional acceleration, and T for the period of the pen­
dulum. 

Mechanical considerations show that T depends on l 
and g alone. But what is the form of the dependence? 
We may remember or guess that 

T = cZmgn 

where c, m, n are certain numerical constants. That is, 
we suppose that T is proportional to certain powers, zm, 
gn, of land g. 

We look at the dimensions. As T is a time, it is meas­
ured in seconds, its dimension is sec. The dimension of 
the length l is em, the dimension of the acceleration g is 
em sec-2, and the dimension of the numerical constant c 
is 1. The test by dimension yields the equation 

sec = 1 • (cm)m (em sec-2)n 
or 

sec= (cm)m+n sec-2n. 

Now, we must have the same powers of the funda­
mental units em and sec on both sides, and thus we 
obtain 

o=m+n 1 = -2n 
and hence 

I 
n= m = -· 

2 2 

Therefore, the formula for the period T must have the 
form 
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The test by dimension yields much in this case but it 
cannot yield everything. First, it gives no information 
about the value of the constant c (which is, in fact, 211) • 
Second, it gives no information about the limits of valid­
ity; the formula is valid only for small oscillations of the 
pendulum and only approximately (it is exact for "in­
finitely small" oscillations). In spite of these limitations, 
there is no doubt that the consideration of the dimen­
sions has allowed us to foresee quickly and with the most 
elementary means an essential part of a result whose 
exhaustive treatment demands much more advanced 
means. And this is so in many similar cases. 

The future mathematician should be a clever problem­
solver; but to be a clever problem-solver is not enough. 
In due time, he should solve significant mathematical 
problems; and first he should find out for which kind of 
problems his native gift is particularly suited. 

For him, the most important part of the work is to 
look back at the completed solution. Surveying the 
course of his work and the final shape of the solution, 
he may find an unending variety of things to observe. He 
may meditate upon the difficulty of the problem and 
about the decisive idea; he may try to see what hampered 
him and what helped him finally. He may look out for 
simple intuitive ideas: Can you see it at a glance? He 
may compare and develop various methods: Can you 
derive the result differently? He may try to clarify his 
present problem by comparing it to problems formerly 
solved; he may try to invent new problems which he can 
solve on the basis of his just completed work: Can you 
use the result, or the method, for some other problem? 
Digesting the problems he solved as completely as he can, 
he may acquire well ordered knowledge, ready to use. 

The future mathematician learns, as does everybody 



206 The Intelligent Problem-solver 

else, by imitation and practice. He should look out for 
the right model to imitate. He should observe a stimu­
lating teacher. He should compete with a capable friend. 
Then, what may be the most important, he should read 
not only current textbooks but good authors till he finds 
one whose ways he is naturally inclined to imitate. He 
should enjoy and seek what seems to him simple or in­
structive or beautiful. He should solve problems, choose 
the problems which are in his line, meditate upon their 
solution, and invent new problems. By these means, and 
by all other means, he should endeavor to make his first 
important discovery: he should discover his likes and his 
dislikes, his taste, his own line. 

The intelligent problem-solver often asks himself ques­
tions similar to those contained in our list. He, perhaps, 
discovered questions of this sort by himself; or, having 
heard such a question from somebody, he discovered its 
proper use by himself. He is possibly not conscious at all 
that he repeats the same stereotyped question again and 
again. Or the question is his particular pet; he knows 
that the question is part of his mental attitude appropri­
ate in such and such a phase of the work, and he sum­
mons up the right attitude by asking the right question. 

The intelligent problem-solver may find the questions 
and suggestions of our list useful. He may understand 
quite well the explanations and examples illustrating a 
certain question, he may suspect the proper use of the 
question; but he cannot attain real understanding unless 
he comes across the procedure that the question tries to 
provoke in his own work and, by having experienced its 
usefulness, discovers the proper use of the question for 
himself. 

The intelligent problem-solver should be prepared to 
ask all questions of the list but he should ask none unless 



The Intelligent Reader 

he is prompted to do so by careful consideration of the 
problem at hand and by his own unprejudiced judgment. 
In fact, he must recognize by himself whether the present 
situation is sufficiently similar or not to some other situ­
ation in which he saw the question successfully applied. 

The intelligent problem-solver tries first of all to 
understand the problem as fully and as clearly as he can. 
Yet understanding alone is not enough; he must concen­
trate upon the problem, he must desire earnestly to 
obtain its solution. If he cannot summon up real desire 
for solving the problem he would do better to leave it 
alone. The open secret of real success is to throw your 
whole personality into your problem. 

The intelligent reader of a mathematical book desires 
two things: 

First, to see that the present step of the argument is 
correct. 

Second, to see the purpose of the present step. 
The intelligent listener to a mathematical lecture has 

the same wishes. If he cannot see that the present step 
of the argument is correct and even suspects that it is, 
possibly, incorrect, he may protest and ask a question. If 
he cannot see any purpose in the present step, nor sus­
pect any reason for it, he usually cannot even formulate 
a clear objection, he does not protest, he is just dismayed 
and bored, and loses the thread of the argument. 

The intelligent teacher and the intelligent author of 
textbooks should bear these points in mind. To write 
and speak correctly is certainly necessary; but it is not 
sufficient. A derivation correctly presented in the book 
or on the blackboard may be inaccessible and uninstruc­
tive, if the purpose of the successive steps is incompre­
hensible, if the reader or listener cannot understand how 
it was humanly possible to find such an argument, if he 
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is not able to derive any suggestion from the presenta­
tion as to how he could find such an argument by 
himself. 

The questions and suggestions of our list may be use­
ful to the author and to the teacher in emphasizing the 
purpose and the motives of his argument. Particularly 
useful in this respect is the question: DID WE usE ALL THE 
DATA? The author or the teacher may show by this ques­
tion a good reason for considering the datum that has 
not been used heretofore. The reader or the listener can 
use the same question in order to understand the 
author's or the teacher's reason for considering such and 
such an element, and he may feel that, asking this ques­
tion, he could have discovered this step of the argument 
by himself. 

The traditional mathematics professor of the popular 
legend is absentminded. He usually appears in public 
with a lost umbrella in each hand. He prefers to face the 
blackboard and to turn his back on the class. He writes a, 
he says b, he means c; but it should be d. Some of his 
sayings are handed down from generation to generation. 

"In order to solve this differential equation you look 
at it till a solution occurs to you." 

"This principle is so perfectly general that no particu­
lar application of it is possible." 

"Geometry is the art of correct reasoning on incorrect 
figures." 

"My method to overcome a difficulty Is to go round it." 
"What is the difference between method and device? A 

method is a device which you use twice." 
After all, you can learn something from this traditional 

mathematics professor. Let us hope that the mathematics 
teacher from whom you cannot learn anything will not 
become tradi tiona!. 



Variation of the Problem 

Variation of the problem. An insect (as mentioned 
elsewhere) tries to escape through the windowpane, tries 
the same hopeless thing again and again, and does not 
try the next window which is open and through which it 
came into the room. A mouse may act more intelligently; 
caught in the trap, he tries to squeeze through between 
two bars, then between the next two bars, then between 
other bars; he varies his trials, he explores various pos­
sibilities. A man is able, or should be able, to vary his 
trials still more intelligently, to explore the various pos­
sibilities with more understanding, to learn by his errors 
and shortcomings. "Try, try again" is popular advice. It 
is good advice. The insect, the mouse, and the man 
follow it; but if one follows it with more success than the 
others it is because he varies his problem more intelli­
gently. 

1. At the end of our work, when we have obtained the 
solution, our conception of the problem will be fuller 
and more adequate than it was at the outset. Desiring 
to proceed from our initial conception of the problem to 
a more adequate, better adapted conception, we try vari­
ous standpoints and we view the problem from different 
sides. 

Success in solving the problem depends on choosing 
the right aspect, on attacking the fortress from its ac­
cessible side. In order to find out which aspect is the 
right one, which side is accessible, we try various sides 
and aspects, we vary the problem. 

2. Variation of the problem is essential. This fact can 
be explained in various ways. Thus, from a certain point 
of view, progress in solving the problem appears as mo­
bilization and organization of formerly acquired knowl­
edge. We have to extract from our memory and to work 
into the problem certain elements. Now, variation of the 
problem helps us to extract such elements. How? 



210 Variation of the Problem 

We remember things by a kind of "action by contact," 
called "mental association"; what we have in our mind 
at present tends to recall what was in contact with it at 
some previous occasion. (There is no space and no need 
to state more neatly the theory of association, or to dis­
cuss its limitations.) Varying the problem, we bring in 
new points, and so we create new contacts, new possibili­
ties of contacting elements relevant to our problem. 

3· We cannot hope to solve any worth-while problem 
without intense concentration. But we are easily tired by 
intense concentration of our attention upon the same 
point. In order to keep the attention alive, the object on 
which it is directed must unceasingly change. 

If our work progresses, there is something to do, there 
are new points to examine, our attention is occupied, our 
interest is alive. But if we fail to make progress, our at­
tention falters, our interest fades, we get tired of the 
problem, our thoughts begin to wander, and there is 
danger of losing the problem altogether. To escape from 
this danger we have to set ourselves a new question about 
the problem. 

The new question unfolds untried possibilities of con­
tact with our previous knowledge, it revives our hope of 
making useful contacts. The new question reconquers 
our interest. by varying the problem, by showing some 
new aspect of it. 

4· Example. Find the volume of the frustum of a pyra­
mid with square base, being given the side of the lower 
base a, the side of the upper base b, and the altitude of 
the frustum h. 

The problem may be proposed to a class familiar with 
the formulas for the volume of prism and pyramid. If 
the students do not come forward with some idea of their 
own, the teacher may begin with varying the data of the 
problem. We start from a frustum with a> b. What 
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happens when b increases till it becomes equal to a? The 
frustum becomes a prism and the volume in question 
becomes a2h. What happens when b decreases till it 
becomes equal to o? The frustum becomes a pyramid 
and the volume in question becomes a2hl3· 

This variation of the data contributes, first of all, to 
the interest of the problem. Then, it may suggest using, 
in some way or other, the results quoted about prism and 
pyramid. At any rate, we have found definite properties 
of the final result; the final formula must be such that it 
reduces to a2h forb= a and to a2h/3 forb = o. It is an 
advantage to foresee properties of the result we are try­
ing to obtain. Such properties may give valuable sugges­
tions and, in any case, when we have found the final 
formula we shall be able to test it. We have thus, in 
advance, an answer to the question: CAN YOU CHECK THE 
RESULT? (See there, under 2.) 

5· Example. Construct a trapezoid being given its four 
sides a, b, c, d. 

Let a be the lower base and c the upper base; a and c 
are parallel but unequal, b and d are not parallel. If 
there is no other idea, we may begin with varying the 
data. 

We start from a trapezoid with a> c. What happens 
when c decreases till it becomes equal too? The trapezoid 
degenerates into a triangle. Now a triangle is a familiar 
and simple figure, which we can construct from various 
data; there could be some advantage in introducing this 
triangle into the figure. We do so by drawing just one 
auxiliary line, a diagonal of the trapezoid (Fig. 21) . Ex­
amining the triangle we find however that it is scarcely 
useful; we know two sides, a and d, but we should have 
three data. 

Let us try something else. What happens when c in­
creases till it becomes equal to a? The trapezoid becomes 
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a parallelogram. Could we use it? A little examination 
(see Fig. 22) directs our attention to the triangle which 
we have added to the original trapezoid when drawing 
the parallelogram. This triangle is easily constructed; we 
know three data, its three sides b~ d~ and a - c. 
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Varying the original problem (construction of the 
trapezoid) we have been led to a more accessible aux­
iliary problem (construction of the triangle) . Using the 
result of the auxiliary problem we easily solve our orig­
inal problem (we have to complete the parallelogram). 

Our example is typical. It is also typical that our first 
attempt failed. Looking back at it, we may see however 
that that first attempt was not so useless. There was some 
idea in it; in particular, it gave us an opportunity to 
think of the construction of a triangle as means to our 
end. In fact, we arrived at our second, successful trial by 
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modifying our first, unsuccessful trial. We varied c; we 
first tried to decrease it, then to increase it. 

6. As in the foregoing example, we often have to try 
various modifications of the problem. We have to vary, to 
restate, to transform it again and again till we succeed 
eventually in finding something useful. We may learn by 
failure; there may be some good idea in an unsuccessful 
trial, and we may arrive at a more successful trial by 
modifying an unsuccessful one. What we attain after 
various trials is very often, as in the foregoing example, 
a more accessible auxiliary problem. 

7. There are certain modes of varying the problem 
which are typically useful, as going back to the DEFINI­

TION, DECOMPOSING AND RECOMBINING, introducing AUXIL­

IARY ELEMENTS, GENERALIZATION, SPECIALIZATION, and the 
use of ANALOGY. 

8. What we said a while ago (under 3) about new 
questions which may reconquer our interest is important 
for the proper use of our list. 

A teacher may use the list to help his students. If the 
student progresses, he needs no help and the teacher 
should not ask him any questions, but allow him to work 
alone which is obviously better for his independence. But 
the teacher should, of course, try to find some suitable 
question or suggestion to help him when he gets stuck. 
Because then there is danger that the student will get 
tired of his problem and drop it, or lose interest and 
make some stupid blunder out of sheer indifference. 

We may use the list in solving our own problems. To 
use it properly we proceed as in the former case. When 
our progress is satisfactory, when new remarks emerge 
spontaneously, it would be simply stupid to hamper our 
spontaneous progress by extraneous questions. But when 
our progress is blocked, when nothing occurs to us, there 
is danger that we may get tired of our problem. Then it 
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is time to think of some general idea that could be help­
ful, of some question or suggestion of the list that might 
be suitable. And any question is welcome that has some 
chance of showing a new aspect of the problem; it may 
reconquer our interest, it may keep us working and 
thinking. 

What is the unknown? What is required? What do you 
want? What are you supposed to seek? 

What are the data? What is given? What have you? 
What is the condition? By what condition is the un­

known linked to the data? 
These questions may be used by the teacher to test the 

understanding of the problem; the student should be 
able to answer them clearly. Moreover, they direct the 
student's attention to the principal parts of a "problem 
to find," the unknown, the data, the condition. As the 
consideration of these parts may be necessary again and 
again, the questions may be often repeated in the later 
phases of the solution. (Examples in sections 8, 10, 18, 
20; SETIING UP EQUATIONS, 3• 4; PRACTICAL PROBLEMS, 1; 

PUZZLEs; and elsewhere.) 
The questions are of the greatest importance for the 

problem-solver. He checks his own understanding of the 
problem, he focuses his attention on this or that prin­
cipal part of the problem. The solution consists essen­
tially in linking the unknown to the data. Therefore, the 
problem-solver has to focus those elements again and 
again, asking: What is the unknown? What are the data? 

The problem may have many unknowns, or the condi­
tion may have various parts which must be considered 
separately, or it may be desirable to consider some datum 
by itself. Therefore, we may use various modifications of 
our questions, as: What are the unknowns? What is the 
first datum? What is the second datum? What are the 
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various parts of the condition? What is the first clause 
of the condition? 

The principal parts of a "problem to prove" are the 
hypothesis and the conclusion, and the corresponding 
questions are: What is the hypothesis? What is the con­
clusion? We may need some variation of verbal expres­
sion or modification of these frequently useful questions 
as: What do you assume? What are the various parts of 
your assumption? (Example in section 19.) 

Why proofs? There is a traditional story about New­
ton: As a young student, he began the study of geometry, 
as was usual in his time, with the reading of the Elements 
of Euclid. He read the theorems, saw that they were true, 
and omitted the proofs. He wondered why anybody 
should take pains to prove things so evident. Many years 
later, however, he changed his opinion and praised 
Euclid. 

The story may be authentic or not, yet the question 
remains: Why should we learn, or teach, proofs? What is 
preferable: no proof at all, or proofs for everything, or 
some proofs? And, if only some proofs, which proofs? 

1. Complete proofs. For a logician of a certain sort 
only complete proofs exist. 'What intends to be a proof 
must leave no gaps, no loopholes, no uncertainty what­
ever, or else it is no proof. Can we find complete proofs 
according to such a high standard in everyday life, or in 
legal procedure, or in physical science? Scarcely. Thus, it 
is difficult to understand how we could acquire the idea 
of such a strictly complete proof. 

We may say, with a little exaggeration, that humanity 
learned this idea from one man and one book: from 
Euclid and his Elements. In any case, the study of the 
elements of plane geometry yields still the best oppor­
tunity to acquire the idea of rigorous proof. 
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Let us take as an example the proof of the theorem: In 
any triangle, the sum of the three angles is equal to two 
right angles.ll Fig. 23, which is an inalienable mental 
property of most of us, needs little explanation. There 
is a line through the vertex A parallel to the side B C. 

A 

FIG. 23 

The angles of the triangle at B and at C are equal to ce.:'­
tain angles at A, as is emphasized in the figure, since 
alternate angles are equal in general. The three angles 
of the triangle are equal to three angles with a common 
vertex A, forming a straight angle, or two right angles; 
and so the theorem is proved. 

If a student has gone through his mathematics classes 
without having really understood a few proofs like the 
foregoing one, he is entitled to address a scorching re­
proach to his school and to his teachers. In fact, we 
should distinguish between things of more and less im­
portance. If the student failed to get acquainted with 
this or that particular geometric fact, he did not miss so 
much; he may have little use for such facts in later life. 
But if he failed to get acquainted with geometric proofs, 
he missed the best and simplest examples of true evi­
dence and he missed the best opportunity to acquire the 

11 Part of Proposition 32 of Book I of Euclid's Elements. The 
following proof is not Euclid's, but was known to the Greeks. 
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idea of strict reasoning. Without this idea, he lacks a true 
standard with which to compare alleged evidence of all 
sorts aimed at him in modern life. 

In short, if general education intends to bestow on the 
student the ideas of intuitive evidence and logical rea­
soning, it must reserve a place for geometric proofs. 

2. Logical system. Geometry, as presented in Euclid's 
Elements, is not a mere collection of facts but a logical 
system. The axioms, definitions, and propositions are not 
listed in a random sequence but disposed in accom­
plished order. Each proposition is so placed that it can 
be based on the foregoing axioms, definitions, and propo­
sitions. We may regard the disposition of the proposi­
tions as Euclid's main achievement and their logical 
system as the main merit of the Elements. 

Euclid's geometry is not only a logical system but it is 
the first and greatest example of such a system, which 
other sciences have tried, and are still trying, to imitate. 
Should other sciences-especially those very far from geom­
etry, as psychology, or jurisprudence-imitate Euclid's 
rigid logic? This is a debatable question; but nobody can 
take part in the debate with competence who is not 
acquainted with the Euclidean system. 

Now, the system of geometry is cemented with proofs. 
Each proposition is linked to the foregoing axioms, defi­
nitions, and propositions by a proof. Without under­
standing such proofs we cannot understand the very 
essence of the system. 

In short, if general education intends to bestow on the 
student the idea of logical system, it must reserve a place 
for geometric proofs. 

3· Mnemotechnic system. The author does not think 
that the ideas of intuitive evidence, strict reasoning, and 
logical system are superfluous for anybody. There may 
be cases, however, in which the study of these ideas is not 
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considered absolutely necessary, owing to lack of time, 
or for other reasons. Yet even in such cases proofs may 
be desirable. 

Proofs yield evidence; in so doing, they hold together 
the logical system; and they help us to remember the 
various items held together. Take the example discussed 
above, in connection with Fig. 23. This figure renders 
evident the fact that the sum of the angles in a triangle 
equals 180°. The figure connects this fact with the other 
fact that alternate angles are equal. Connected facts how­
ever are more interesting and are better retained than 
isolated facts. Thus, our figure fixes the two connected 
geometric propositions in our mind and, finally, the 
figure and the propositions may become our inalienable 
mental property. 

Now we come to the case in which the acquisition of 
general ideas is not regarded as necessary, only that of 
certain facts is desired. Even in such a case, the facts must 
be presented in some connection and in some sort of sys­
tem, since isolated items are laboriously acquired and 
easily forgotten. Any sort of connection that unites the 
facts simply, naturally, and durably, is welcome here. 
The system need not be founded on logic, it must only 
be designed to aid the memory effectively; it must be 
what is called a mnemotechnic system. Yet even from the 
point of view of a purely mnemotechnic system, proofs 
may be useful, especially simple proofs. For instance, the 
student must learn the fact about the sum of the angles 
in the triangle and that other fact about the alternate 
angles. Can any device to retain these facts be simpler, 
more natural or more effective than Fig. 23? 

In short, even when no special importance is attached 
to general logical ideas proofs may be useful as a mnemo­
technic device. 

4· The cookbook system. We have discussed the advan­
tages of proofs but we certainly did not advocate that all 
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proofs should be given "in extenso." On the contrary, 
there are cases in which it is scarcely possible to do so; 
an important case is the teaching of the differential and 
integral calculus to students of engineering. 

If the calculus is presented according to modern stand­
ards of rigor, it demands proofs of a certain degree of 
difficulty and subtlety ("epsilon-proofs") . But engineers 
study the calculus in view of its application and have 
neither enough time nor enough training or interest to 
struggle through long proofs or to appreciate subtleties. 
Thus, there is a strong temptation to cut out all the 
proofs. Doing so, however, we reduce the calculus to the 
level of the cookbook. 

The cookbook gives a detailed description of ingredi­
ents and procedures but no proofs for its prescriptions 
or reasons for its recipes; the proof of the pudding is in 
the eating. The cookbook may serve its purpose perfectly. 
In fact, it need not have any sort of logical or mnemo­
technic system since recipes are written or printed and 
not retained in memory. 

Yet the author of a textbook of calculus, or a college 
instructor, can hardly serve his purpose if he follows the 
system of the cookbook too closely. If he teaches proce­
dures without proofs, the unmotivated procedures are not 
understood. If he gives rules without reasons, the un­
connected rules are quickly forgotten. Mathematics can­
not be tested in exactly the same manner as a pudding; 
if all sorts of reasoning are debarred, a course of calculus 
may easily become an incoherent inventory of indigest­
ible information. 

5· Incomplete proofs. The best way of handling the 
dilemma between too heavy proofs and the level of the 
cookbook may be to make reasonable use of incomplete 
proofs. 

For a strict logician, an incomplete proof is no proof 
at all. And, certainly, incomplete proofs ought to be 
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carefully distinguished from complete proofs; to confuse 
one with the other is bad, to sell one for the other is 
worse. It is painful when the author of a textbook pre­
sents an incomplete proof ambiguously, with visible hesi­
tation between shame and the pretension that the proof 
is complete. But incomplete proofs may be useful when 
they are used in their proper place and in good taste. 
Their purpose is not to replace complete proofs, which 
they never could, but to lend interest and coherence to 
the presentation. 

Example 1. An algebraic equation of degree n has ex­
actly n roots. This proposition, called the Fundamental 
Theorem of Algebra by Gauss, must often be presented 
to students who are quite unprepared for understanding 
its proof. They know however that an equation of the 
first degree has one root, and one of the second degree 
two roots. Moreover the difficult proposition has a part 
that can be easily shown: no equation of degree n has 
more than n different roots. Do the facts mentioned con­
stitute a complete proof for the Fundamental Theorem? 
By no means. They are sufficient however to lend it a 
certain interest and plausibility-and to fix it in the 
minds of the students, which is the main thing. 

Example 2. The sum of any two of the plane angles 
formed by the edges of a trihedral angle is greater than 
the third. Obviously, the theorem amounts to affirming 
that in a spherical triangle the sum of any two sides is 
greater than the third. Having observed this, we nat­
urally think of the analogy of the spherical triangle with 
the rectilinear triangle. Do these remarks constitute a 
proof? By no means; but they help us to understand and 
to remember the proposed theorem. 

Our first example has historical interest. For about 
250 years, the mathematicians believed the Fundamental 
Theorem without complete proof-in fact, without much 
more basis than what was mentioned above. Our second 
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example points to ANALOGY as an important source of 
conjectures. In mathematics, as in the natural and physi­
cal sciences, discovery often starts from observation, 
analogy, and induction. These means, tastefully used in 
framing a plausible heuristic argument, appeal particu­
larly to the physicist and the engineer. (See also INDUC­

TION AND MATHEMATICAL INDUCTION, 1, 2, 3·) 
The role and interest of incomplete proofs is explained 

to a certain extent by our study of the process of the solu­
tion. Some experience in solving problems shows that the 
first idea of a proof is very frequently incomplete. The 
most essential remark, the main connection, the germ of 
the proof may be there, but details must be provided 
afterwards and are often troublesome. Some authors, but 
not many, have the gift of presenting just the germ of the 
proof, the main idea in its simplest form, and indicating 
the nature of the remaining details. Such a proof, al­
though incomplete, may be much more instructive than 
a proof presented with complete details. 

In short, incomplete proofs may be used as a sort of 
mnemotechnic device (but, of course, not as substitutes 
for complete proofs) when the aim is tolerable coherence 
of presentation and not strictly logical consistency. 

It is very dangerous to advocate incomplete proofs. 
Possible abuse, however, may be kept within bounds by a 
few rules. First, if a proof is incomplete, it must be in­
dicated as such, somewhere and somehow. Second, an 
author or a teacher is not entitled to present an incom­
plete proof for a theorem unless he knows very well a 
complete proof for it himself. 

And it may be confessed that to present an incomplete 
proof in good taste is not easy at all. 

Wisdom of proverbs. Solving problems is a fundamen­
tal human activity. In fact, the greater part of our con­
scious thinking is concerned with problems. When we 
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do not indulge in mere musing or daydreaming, our 
thoughts are directed toward some end; we seek means, 
we seek to solve a problem. 

Some people are more and others less successful in 
attaining their ends and solving their problems. Such 
differences are noticed, discussed, and commented upon, 
and certain proverbs seem to have preserved the quintes­
sence of such comments. At any rate, there are a good 
many proverbs which characterize strikingly the typical 
procedures followed in solving problems, the points of 
common sense involved, the usual tricks, and the usual 
errors. There are many shrewd and some subtle remarks 
in proverbs but, obviously, there is no scientific system 
free of inconsistencies and obscurities in them. On the 
contrary, many a proverb can be matched with another 
proverb giving exactly opposite advice, and there is a 
great latitude of interpretation. It would be foolish to 
regard proverbs as an authoritative source of universally 
applicable wisdom but it would be a pity to disregard 
the graphic description of heuristic procedures provided 
by proverbs. 

It could be an interesting task to collect and group 
proverbs about planning, seeking means, and choosing 
between lines of action, in short, proverbs about solving 
problems. Of the space needed for such a task only a 
small fraction is available here; the best we can do is to 
quote a few proverbs illustrating the main phases of the 
solution emphasized in our list, and discussed in sections 
6 to 14 and elsewhere. The proverbs quoted will be 
printed in italics. 

1. The very first thing we must do for our problem is 
to understand it: Who understands ill, answers ill. We 
must see clearly the end we have to attain: Think on the 
end before you begin. This is an old piece of advice; 
"respice finem" is the saying in Latin. Unfortunately, not 
everybody heeds such good advice, and people often start 
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speculating, talking, and even acting fussily without hav­
ing properly understood the aim for which they should 
work. A fool looks to the beginning, a wise man regards 
the end. If the end is not clear in our mind, we may 
easily stray from the problem and drop it. A wise man 
begins in the end, a fool ends in the beginning. 

Yet it is not enough to understand the problem, we 
must also desire its solution. We have no chance to solve 
a difficult problem without a strong desire to solve it, 
but with such desire there is a chance. Where there is a 
will there is a way. 

2. Devising a plan, conceiving the idea of an appro­
priate action, is the main achievement in the solution of 
a problem. 

A good idea is a piece of good fortune, an inspiration, 
a gift of the gods, and we have to deserve it: Diligence is 
the mother of good luck. Perseverance kills the game. An 
oak is not felled at one stroke. If at first you don't suc­
ceed, try, try again. It is not enough however to try re­
peatedly, we must try different means, vary our trials. 
Try all the keys in the bunch. Arrows are made of all 
sorts of wood. We must adapt our trials to the circum­
stances. As the wind blows you must set your sail. Cut 
your coat according to the cloth. We must do as we may 
if we can't do as we would. If we have failed, we must 
try something else. A wise man changes his mind, a fool 
never does. We should even be prepared from the outset 
for a possible failure of our scheme and have another 
one in reserve. Have two strings to your bow. We may, 
of course, overdo this sort of changing from one scheme 
to another and lose time. Then we may hear the ironical 
comment: Do and undo, the day is long enough. We are 
likely to blunder less if we do not lose sight of our aim. 
The end of fishing is not angling but catching. 

We work hard to extract something helpful from our 
memory, yet, quite often, when an idea that could be 
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helpful presents itself, we do not appreciate it, for it is 
so inconspicuous. The expert has, perhaps, no more ideas 
than the inexperienced, but appreciates more what he 
has and uses it better. A wise man will make more oppor­
tunities than he finds. A wise man will make tools of 
what comes to hand. A wise man turns chance into good 
fortune. Or, possibly, the advantage of the expert is that 
he is continually on the lookout for opportunities. Have 
an eye to the main chance. 

3· We should start carrying out our plan at the right 
moment, when it is ripe, but not before. We should not 
start rashly. Look before you leap. Try before you trust. 
A wise delay makes the road safe. On the other hand, we 
should not hesitate too long. If you will sail without 
danger you must never put to sea. Do the likeliest and 
hope the best. Use the means and God will give the 
blessing. 

We must use our judgment to determine the right 
moment. And here is a timely warning that points out 
the most common fallacy, the most usual failure of our 
judgment: We soon believe what we desire. 

Our plan gives usually but a general outline. We have 
to convince ourselves that the details fit into the outline, 
and so we have to examine carefully each detail, one 
after the other. Step after step the ladder is ascended. 
Little by little as the cat ate the fiickle. Do it by de­
grees. 

In carrying out our plan we must be careful to arrange 
its steps in the proper order, which is frequently just 
the reverse of the order of invention. What a fool does at 
last, a wise man does at first. 

4· Looking back at the completed solution is an im­
portant and instructive phase of the work. He thinks not 
well that thinks not again. Second thoughts are best. 

Reexamining the solution, we may discover an addi­
tional confirmation of the result. Yet it must be pointed 
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out to the beginner that such an additional confirmation 
is valuable, that two proofs are better than one. It is safe 
riding at two anchors. 

5· We have by no means exhausted the comments of 
proverbs on the solution of problems. Yet many other 
proverbs which could be quoted would scarcely furnish 
new themes, only variations on the themes already men­
tioned. Certain more systematic and more sophisticated 
aspects of the process of solution are hardly within the 
scope of the Wisdom of Proverbs. 

In describing the more systematic aspects of the solu­
tion, the author tried now and then to imitate the pecul­
iar turn of proverbs, which is not easy. Here follow a 
few "synthetic" proverbs which describe somewhat more 
sophisticated attitudes. 

The end suggests the means. 
Your five best friends are What, Why, Where, When, 

and How. You ask What, you ask Why, you ask Where, 
When, and How-and ask nobody else when you need 
advice. 

Do not believe anything but doubt only what is worth 
doubting. 

Look around when you have got your first mushroom 
or made your first discovery; they grow in clusters. 

Working backwards. If we wish to understand human 
behavior we should compare it with animal behavior. 
Animals also "have problems" and "solve problems." 
Experimental psychology has made essential progress in 
the last decades in exploring the "problem-solving" activ­
ities of various animals. We cannot discuss here these 
investigations but we shall describe sketchily just one 
simple and instructive experiment and our description 
will serve as a sort of comment upon the method of analy­
sis, or method of "working backwards." This method, by 
the way, is discussed also elsewhere in the present book, 
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under the name of PAPPUS to whom we owe an important 
description of the method. 

1. Let us try to find an answer to the following tricky 
question: How can you bring up from the river exactly 
six quarts of water when you have only two containers, 
a four quart pail and a nine quart pail, to measure with? 

Let us visualize clearly the given tools we have to work 
with, the two containers. (What is given?) We imagine 
two cylindrical containers having equal bases whose 
altitudes are as g to 4, see Fig. 24. If along the lateral sur-

FIG. 24 

face of each container there were a scale of equally spaced 
horizontal lines from which we could tell the height of 
the waterline, our problem would be easy. Yet there is no 
such scale and so we are still far from the solution. 

We do not know yet how to measure exactly 6 quarts; 
but could we measure something else? (If you cannot 
solve the proposed problem try to solve first some related 
problem. Could you derive something useful from the 
data?) Let us do something, let us play around a little. 
We could fill the larger container to full capacity and 
empty so much as we can into the smaller container; then 
we could get 5 quarts. Could we also get 6 quarts? Here 
are again the two empty containers. \Ve could also ..• 

We are working now as most people do when con­
fronted with this puzzle. We start with the two empty 
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containers, we try this and that, we empty and fill, and 
when we do not succeed, we start again, trying something 
else. We are working forwards, from the given initial 
situation to the desired final situation, from the data to 
the unknown. We may succeed, after many trials, acci­
dentally. 

2. But exceptionally able people, or people who had 
the chance to learn in their mathematics classes some­
thing more than mere routine operations, do not spend 
too much time in such trials but turn around, and start 
working backwards. 

What are we required to do? (What is the unknown?) 
Let us visualize the final situation we aim at as clearly 
as possible. Let us imagine that we have here, before us, 

u 
FIG. 25 

the larger container with exactly 6 quarts in it and the 
smaller container empty as in Fig. 25. (Let us start from 
what is required and assume what is sought as already 
found, says Pappus.) 

From what foregoing situation could we obtain the 
desired final situation shown in Fig. 25? (Let us inquire 
from what antecedent the desired result could be derived, 
says Pappus.) We could, of course, fill the larger con­
tainer to full capacity, that is, to 9 quarts. But then we 
should be able to pour out exactly three quarts. To do 
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that ... we must have just one quart in the smaller con­
tainer! That's the idea. See Fig. 26. 

(The step that we have just completed is not easy at 
all. Few persons are able to take it without much fore­
going hesitation. In fact, recognizing the significance of 
this step, we foresee an outline of the following solu­
tion.) 

FIG. 26 

But how can we reach the situation that we have just 
found and illustrated by Fig. 26? (Let us inquire again 
what could be the antecedent of that antecedent.) Since 
the amount of water in the river is, for our purpose, un­
limited, the situation of Fig. 26 amounts to the same as 
the next one in Fig. 27 

FIG. 27 

or the following in Fig. 28. 
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u 
FIG. 28 

It is easy to recognize that if any one of the situations 
in Figs. 26, 27, 28 is obtained, any other can be obtained 
just as well, but it is not so easy to hit upon Fig. 28, 
unless we have seen it before) encountered it accidentally 
in one of our initial trials. Playing around with the two 
containers, we may have done something similar and re­
member now, in the right moment, that the situation of 
Fig. 28 can arise as suggested by Fig. 29: We fill the large 

u 
FIG. 29 

container to full capacity, and pour from it four quarts 
into the smaller container and then into the river, twice 
in succession. We came eventually upon something al­
ready known (these are Pappus's words) and following 
the method of analysis, working backwards) we have dis­
covered the appropriate sequence of operations. 
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It is true, we have discovered the appropriate sequence 
in retrogressive order but all that is left to do is to 
reverse the process and start from the point which we 
reached last of all in the analysis (as Pappus says). First, 
we perform the operations suggested by Fig. 29 and ob­
tain Fig. 28; then we pass to Fig. 27, then to Fig. 26, and 
finally to Fig. 25. Retracing our steps, we finally succeed 
in deriving what was required. 

3· Greek tradition attributed to Plato the discovery of 
the method of analysis. The tradition may not be quite 
reliable but, at any rate, if the method was not invented 
by Plato, some Greek scholar found it necessary to 
attribute its invention to a philosophical genius. 

There is certainly something in the method that is not 
superficial. There is a certain psychological difficulty in 
turning around, in going away from the goal, in working 
backwards, in not following the direct path to the desired 
end. When we discover the sequence of appropriate oper­
ations, our mind has to proceed in an order which is 
exactly the reverse of the actual performance. There is 
some sort of psychological repugnance to this reverse 
order which may prevent a quite able student from un­
derstanding the method if it is not presented carefully. 

Yet it does not take a genius to solve a concrete prob­
lem working backwards; anybody can do it with a little 
common sense. We concentrate upon the desired end, we 
visualize the final position in which we would like to be. 
From what foregoing position could we get there? It is 
natural to ask this question, and in so asking we work 
backwards. Quite primitive problems may lead naturally 
to working backwards; see PAPPUS, 4· 

Working backwards is a common-sense procedure 
within the reach of everybody and we can hardly doubt 
that it was practiced by mathematicians and nonmathe­
maticians before Plato. What some Greek scholar may 
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have regarded as an achievement worthy of the genius 
of Plato is to state the procedure in general terms and to 
stamp it as an operation typically useful in solving 
mathematical and nonmathematical problems. 

4· And now, we turn to the psychological experiment­
if the transition from Plato to dogs, hens, and chimpan­
zees is not too abrupt. A fence forms three sides of a 
rectangle but leaves open the fourth side as shown in 
Fig. 30. We place a dog on one side of the fence, at the 

F 
G .. , ................. . 

• • • • (!) • 0 • • D • • • • • • • • • • • • 
• • 

FIG. 30 

point D, and some food on the other side, at the point F. 
The problem is fairly easy for the dog. He may first strike 
a posture as if to spring directly at the food but then he 
quickly turns about, dashes off around the end of the 
fence and, '!'unning without hesitation, reaches the food 
in a smooth curve. Sometimes, however, especially when 
the points D and F are close to each other, the solution 
is not so smooth; the dog may lose some time in barking, 
scratching, or jumping against the fence before he "con­
ceives the bright idea" (as we would say) of going 
around. 

It is interesting to compare the behavior of various ani-
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mals put into the place of the dog. The problem is very 
easy for a chimpanzee or a four-year-old child (for whom 
a toy may be a more attractive lure than food). The prob­
lem, however, turns out to be surprisingly difficult for a 
hen who runs back and forth excitedly on her side of the 
fence and may spend considerable time before getting at 
the food if she gets there at all. But she may succeed, 
after much running, accidentally. 

5· We should not build a big theory upon just one 
simple experiment which was only sketchily reported. 
Yet there can be no disadvantage in noticing obvious 
analogies provided that we are prepared to recheck and 
revalue them. 

Going around an obstacle is what we do in solving any 
kind of problem; the experiment has a sort of symbolic 
value. The hen acted like people who solve their prob­
lem muddling through, trying again and again, and suc­
ceeding eventually by some lucky accident without much 
insight into the reasons for their success. The dog who 
scratched and jumped and barked before turning around 
solved his problem about as well as we did ours about 
the two containers. Imagining a scale that shows the 
waterline in our containers was a sort of almost useless 
scratching, showing only that what we seek lies deeper 
under the surface. We also tried to work forwards first, 
and came to the idea of turning round afterwards. The 
dog who, after brief inspection of the situation, turned 
round and dashed off gives, rightly or wrongly, the im­
pression of superior insight. 

No, we should not even blame the hen for her clumsi­
ness. There is a certain difficulty in turning round, in 
going away from the goal, in proceeding without looking 
continually at the aim, in not following the direct path 
to the desired end. There is an obvious analogy between 
her difficulties and our difficulties. 



PART IV. PROBLEMS, HINTS, 
SOLUTIONS 

This last part offers the reader additional opportunity 
for practice. 

The problems require no more preliminary knowledge 
than the reader could have acquired from a good high­
school curriculum. Yet they are not too easy and not 
mere routine problems; some of them demand originality 
and ingenuity.12 

The hints offer indications leading to the result, mostly 
by quoting an appropriate sentence from the list; to a 
very attentive reader ready to pick up suggestions they 
may reveal the key idea of the solution. 

The solutions bring not only the answer but also the 
procedure leading to the answer, although, of course, the 
reader has to supply some of the details. Some solutions 
try to open up some further outlook by a few words 
placed at the end. 

The reader who has earnestly tried to solve the prob­
lem has the best chance to profit by the hint and the 
solution. If he obtains the result by his own means, he 
may learn something by comparing his method with the 
method given in print. If, after a serious effort, he is 
inclined to give up, the hint may supply him with the 

12 Except Problem 1 (widely known, but too amusing to miss) all 
the problems are taken from the Stanford University Competitive 
Examinations in Mathematics (there are a few minor changes) . 
Some of the problems were formerly published in The American 
Mathematical Monthly and/or The California Mathematics Coun­
cil Bulletin. In the latter periodical also some solutions were 
published by the author; they appear appropriately rearranged in 
the sequel. 

233 
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missing idea. If even the hint does not help, he may look 
at the solution, try to isolate the key idea, put the book 
aside, and then try to work out the solution. 

PROBLEMS 

1. A bear, starting from the point P, walked one mile 
due south. Then he changed direction and walked one 
mile due east. Then he turned again to the left and 
walked one mile due north, and arrived exactly at the 
point P he started from. What was the color of the bear? 

2. Bob wants a piece of land, exactly level, which has 
four boundary lines. Two boundary lines run exactly 
north-south, the two other:; exactly east-west, and each 
boundary line measures exactly 100 feet. Can Bob buy 
such a piece of land in the U.S.? 

3· Bob has 10 pockets and 44 silver dollars. He wants 
to put his dollars into his pockets so distributed that each 
pocket contains a different number of dollars. Can he do 
so? 

4· To number the pages of a bulky volume, the printer 
used 2g8g digits. How many pages has the volume? 

5· Among Grandfather's papers a bill was found: 

72 turkeys $_67·9-

The first and last digit of the number that obviously 
represented the total price of those fowls are replaced 
here by blanks, for they have faded and are now illegible. 

What are the two faded digits and what was the price 
of one turkey? 

6. Given a regular hexagon and a point in its plane. 
Draw a straight line through the given point that divides 
the given hexagon into two parts of equal area. 

7· Given a square. Find the locus of the points from 
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which the square is seen under an angle (a) of go0 

(b) of 45°. (Let P be a point outside the square, but in 
the same plane. The smallest angle with vertex P con­
taining the square is the "angle under which the square 
is seen" from P.) Sketch clearly both loci and give a full 
description. 

8. Call "axis" of a solid a straight line joining two 
points of the surface of the solid and such that the solid, 
rotated about this line through an angle which is greater 
than 0° and less than 360° coincides with itself. 

Find the axes of a cube. Describe clearly the location 
of the axes, find the angle of rotation associated with 
each. Assuming that the edge of the cube is of unit 
length, compute the arithmetic mean of the lengths of 
the axes. 

g. In a tetrahedron (which is not necessarily regular) 
two opposite edges have the same length a and they are 
perpendicular to each other. Moreover they are each per­
pendicular to a line of length b which joins their mid­
points. Express the volume of the tetrahedron in terms of 
a and b, and prove your answer. 

10. The vertex of a pyramid opposite the base is called 
the apex. (a) Let us call a pyramid "isosceles" if its apex 
is at the same distance from all vertices o£ the base. 
Adopting this definition, prove that the base of an 
isosceles pyramid is inscribed in a circle the center of 
which is the foot of the pyramid's altitude. 

(b) Now let us call a pyramid "isosceles" if its apex 
is at the same (perpendicular) distance from all sides of 
the base. Adopting this definition (different from the 
foregoing) prove that the base of an isosceles pyramid is 
circumscribed about a circle the center of which is the 
foot of the pyramid's altitude. 

11. Find x, y, u, and v, satisfying the system of four 
equations 
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X+ 7Y + 3V + 5U = 16 
8x + 4Y + 6v + 2U = -16 
2X + 6y + 4V + 8u = 16 
5X + 3Y + 7V + U = - 16 

(This may look long and boring: look for a short cut.) 
12. Bob, Peter, and Paul travel together. Peter and 

Paul are good hikers; each walk p miles per hour. Bob 
has a bad foot and drives a small car in which two 
people can ride, but not three; the car covers c miles per 
hour. The three friends adopted the following scheme: 
They start together, Paul rides in the car with Bob, Peter 
walks·. After a while, Bob drops Paul, who walks on; Bob 
returns to pick up Peter, and then Bob and Peter ride in 
the car till they overtake Paul. At this point they change: 
Paul rides and Peter walks just as they started and the 
whole procedure is repeated as often as necessary. 

(a) How much progress (how many miles) does the 
company make per hour? 

(b) Through which fraction of the travel time does 
the car carry just one man? 

(c) Check the extreme cases p = o and p =c. 
13. Three numbers are in arithmetic progression, three 

other numbers in geometric progression. Adding the cor­
responding terms of these two progressions successively, 
we obtain 

respectively, and, adding all three terms of the arith­
metic progression, we obtain 126. Find the terms of both 
progressions. 

14· Determine m so that the equation in x 

x4 - (3m+ 2)x2 + m2 = o 

has four real roots in arithmetic progression. 
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15. The length of the perimeter of a right triangle is 
6o inches and the length of the altitude perpendicular 
to the hypotenuse is 12 inches. Find the sides. 

16. From the peak of a mountain you see two points, 
A and B, in the plain. The lines of vision, directed to 
these points, include the angle Y· The inclination of the 
first line of vision to a horizontal plane is a, that of the 
second line (3. It is known that the points A and B are on 
the same level and that the distance between them is c. 

Express the elevation x of the peak above the common 
level of A and B in terms of the angles a, (3, y, and the 
distance c. 

17. Observe that the value of 

I 2 3 n 
2! + 3! + 4! + · · · + (n + 1)! 

is 1/2, 5/6, 23/24 for n = 1,2,3, respectively, guess the 
general law (by observing more values if necessary) and 
prove your guess. 

18. Consider the table 

I - I 

3 + 5 - 8 
7 + 9 +II - 27 

I 3 + I 5 + I 7 + I 9 - 64 
2I + 23 + 25 + 27 + 29 = 125 

Guess the general law suggested by these examples, ex­
press it in suitable mathematical notation, and prove it. 

19. The side of a regular hexagon is of length n (n is 
an integer). By equidistant parallels to its sides the hexa­
gon is divided into T equilateral triangles each of which 
has sides of length 1. Let V denote the number of vertices 
appearing in this division, and L the number of bound­
ary lines of length 1. (A boundary line belongs to one or 
two triangles, a vertex to two or more triangles.) When 
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n = 1, which is the simplest case, T = 6, V = 7, L = 12. 

Consider the general case and express T, V, and L in 
terms of n. (Guessing is good, proving is better.) 

20. In how many ways can you change one dollar? 
(The "way of changing" is determined if it is known how 
many coins of each kind-cents, nickels, dimes, quarters, 
half dollars-are used.) 

HINTS 

1. What is the unknown? The color of a bear-but 
how could we find the color of a bear from mathematical 
data? What is given? A geometrical situation-but it 
seems self-contradictory: how could the bear, after walk­
ing three miles in the manner described, return to his 
starting point? 

2. Do you know a related problem? 
3· If Bob had very many dollars, he would have obvi­

ously no difficulty in filling each of his pockets differently. 
Could you restate the problem? What is the minimum 
number of dollars that can be put in 10 pockets so that 
no two different pockets contain the same amount? 

4· Here is a problem related to yours: If the book has 
exactly 9 numbered pages, how many digits uses the 
printer? (9, of course.) Here is another problem related 
to yours: If the book has exactly 99 numbered pages, how 
many digits does the printer use? 

5· Could you restate the problem? What can the two 
faded digits be if the total price, expressed in cents, is 
divisible by 72? 

6. Could you imagine a more accessible related prob­
lem? A more general problem? An analogous problem? 
(GENERALIZATION, 2.) 

7· Do you know a related problem? The locus of the 
points from which a given segment of a straight line is 
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seen under a given angle consists of two circular arcs, 
ending in the extreme points of the segment, and sym­
metric to each other with respect to the segment. 

8. I assume that the reader is familiar with the shape 
of the cube and has found certain axes just by inspection 
-but are they all the axes? Can you prove that your list 
of axes is exhaustive? Has your list a clear principle of 
classification? 

g. Look at the unknown! The unknown is the volume 
of a tetrahedron-yes, I know, the volume of any pyramid 
can be computed when the base and the height are given 
(product of both, divided by 3) but in the present case 

neither the base nor the height is given. Could you 
imagine a more accessible related problem? (Don't you 
see a more accessible tetrahedron which is an aliquot 
part of the given one?) 

10. Do you know a related theorem? Do you know a 
related ... simpler ... analogous theorem? Yes: the foot 
of the altitude is the mid-point of the base in an isosceles 
triangle. Here is a theorem related to yours and proved 
before. Could you use ... its method? The theorem on 
the isosceles triangle is proved from congruent right 
triangles of which the altitude is a common side. 

11. It is assumed that the reader is somewhat familiar 
with systems of linear equations. To solve such a system, 
we have to combine its equations in some way-look out 
for relations between the equations which could indicate 
a particularly advantageous combination. 

12. Separate the various parts of the condition. Can 
you write them down? Between the start and the point 
where the three friends meet again there are three dif­
ferent phases: 

(1) Bob rides with Paul 
(2) Bob rides alone 
(3) Bob rides with Peter. 
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Call t1 , t2 , and t3 the durations of these phases, respec­
tively. How could you split the condition into appro­
priate parts? 

13. Separate the various parts of the condition. Can 
you write them down? Let 

a-d, a, a+d 

be the terms of the arithmetic progression, and 

b, bg 

be the terms of the geometric progression. 
14. What is the condition? The four roots must form 

an arithmetic progression. Yet the equation has a par­
ticular feature: it contains only even powers of the un­
known x. Therefore, if a is a root, -a is also a root. 

15. Separate the various parts of the condition. Can 
you write them down? We may distinguish three parts in 
the condition, concerning 

( 1) perimeter 
(2) right triangle 
(3) height to hypotenuse. 

16. Separate the various parts of the condition. Can 
you write them down? Let a and b stand for the lengths 
of the (unknown) lines of vision, a and {3 for their in­
clinations to the horizontal plane, respectively. We may 
distinguish three parts in the condition, concerning 

( 1) the inclination of a 
(2) the inclination of b 
(3) the triangle with sides a, b, and c. 

17. Do you recognize the denominators 2, 6, 24? Do 
you know a related problem? An analogous problem? 
(INDUCTION AND MATHEMATICAL INDUCTION.) 
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18. Discovery by induction needs observation. Observe 
the right-hand sides, the initial terms of the left-hand 
sides, and the final terms. What is the general law? 

19. Draw a figure. Its observation may help you to dis­
cover the law inductively, or it may lead you to relations 
between T, V, L, and n. 

20. What is the unknown? What are we supposed to 
seek? Even the aim of the problem may need some clari­
fication. Could you imagine a more accessible related 
problem? A more general problem? An analogous prob­
lem? Here is a very simple analogous problem: In how 
many ways can you pay one cent? (There is just one 
way.) Here is a more general problem: In how many ways 
can you pay the amount of n cents using these five kinds 
of coins: cents, nickels, dimes, quarters, and half dollars. 
We are especially concerned with the particular case 
n = 100. 

In the simplest particular cases, for small n, we can 
figure out the answer without any high-brow method, 
just by trying, by inspection. Here is a short table (which 
the reader should check). 

n459 10 14 
En 1 2 2 4 4 

15 19 20 24 25 
6 6 9 9 13 

The first line lists the amounts to be paid, generally 
called n. The second line lists the corresponding num­
bers of "ways of paying," generally called En. (Why I 
have chosen this notation is a secret of mine which I am 
not willing to give away at this stage.) 

We are especially concerned with £ 100, but there is 
little hope that we can compute E100 without some 
clear method. In fact the present problem requires a 
little more from the reader than the foregoing ones; he 
should create a little theory. 

Our question is general (to compute En for general n), 
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but it is "isolated." Could you imagine a more accessible 
related problem? An analogous problem? Here is a very 
simple analogous problem: Find An, the number of ways 
to pay the amount of n cents, using only cents. (An = 1.) 

SOLUTIONS 

1. You think that the bear was white and the point P 
is the North Pole? Can you prove that this is correct? As 
it was more or less understood, we idealize the question. 
We regard the globe as exactly spherical and the bear as 
a moving material point. This point, moving due south 
or due north, describes an arc of a meridian and it de­
scribes an arc of a parallel circle (parallel to the equator) 
when it moves due east. We have to distinguish two cases. 

( 1) If the bear returns to the point P along a meridian 
different from the one along which he left P, P is neces­
sarily the North Pole. In fact the only other point of the 
globe in which two meridians meet is the South Pole, but 
the bear could leave this pole only in moving northward. 

(2) The bear could return to the point P along the 
same meridian he left P if, when walking one mile due 
east, he describes a parallel circle exactly n times, where 
n may be 1, 2, 3 ... In this case P is not the North Pole, 
but a point on a parallel circle very close to the South 
Pole (the perimeter of which, expressed in miles, is 
slightly inferior to 27r + I/ n). 

2. We represent the globe as in the solution of Prob­
lem 1. The land that Bob wants is bounded by two 
meridians and two parallel circles. Imagine two fixed 
meridians, and a parallel circle moving away from the 
equator: the arc on the moving parallel intercepted by 
the two fixed meridians is steadily shortened. The center 
of the land that Bob wants should be on the equator: he 
can not get it in the U.S. 
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3· The least possible number of dollars in a pocket is 
obviously o. The next greater number is at least 1, the 
next greater at least 2 ... and the number in the last 
(tenth) pocket is at least g. Therefore, the number of 
dollars required is at least 

0 + 1 + 2 + 3 + ... + g = 45 

Bob cannot make it: he has only 44 dollars. 
4· A volume of ggg numbered pages needs 

9 + 2 X go+ 3 X goo = 288g 

digits. If the bulky volume in question has x pages 

288g + 4(X - ggg) = 2g8g 
X= 1024 

This problem may teach us that a preliminary estimate 
of the unknown may be useful (or even necessary, as in 
the present case). 

5· If _679- is divisible by 72, it is divisible both by 
8 and by g. If it is divisible by 8, the number 79- must 
be divisible by 8 (since 1000 is divisible by 8) and so 
7g- must be 7g2: the last faded digit is 2. If _6792 is 
divisible by g, the sum of its digits must be divisible by 
9 (the rule about "casting out nines") and so the first 
faded digit must be 3· The price of one turkey was (in 
grandfather's time) $367.92 + 72 = $5.11. 

6. "A point and a figure with a center of symmetry (in 
the same plane) are given in position. Find a straight 
line that passes through the given point and bisects the 
area of the given figure." The required line passes, of 
course, through the center of symmetry. See INVENTOR's 

PARADOX. 

7· In any position the two sides of the angle must pass 
through two vertices of the square. As long as they pass 
through the same pair of vertices, the angle's vertex 
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moves along the same arc of circle (by the theorem 
underlying the hint). Hence each of the two loci re­
quired consists of several arcs of circle: of 4 semicircles 
in the case (a) and of 8 quarter circles in the case (b); 
see Fig. 31. 

FIG. 31 

8. The axis pierces the surface of the cube in some 
point which is either a vertex of the cube or lies on an 
edge or in the interior of a face. If the axis passes through 
a point of an edge (but not through one of its end­
points) this point must be the midpoint: otherwise the 
edge could not coincide with itself after the rotation. 
Similarly, an axis piercing the interior of a face must pass 
through its center. Any axis must, of course, pass through 
the center of the cube. And so there are three kinds of 
axes: 

( 1) 4 axes, each through two opposite vertices; angles 
120°,240° 
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(2) 6 axes, each through the mid-points of two oppo­
site edges; angle 180° 

(3) 3 axes, each through the center of two opposite 
faces; angles go0 , 180°, 270°. 

Fer the length of an axis of the first kind see section 
12; the others are still easier to compute. The desired 
average is 

4v3 + 6V2 + 3 _ 6 -=---=-----...::; - 1.41 . 
13 

(This problem may be useful in preparing the reader for 
the study of crystallography. For the reader sufficiently 
advanced in the integral calculus it may be observed that 
the average computed is a fairly good approximation to 
the "average width" of the cube, which is, in fact, 
3/2 = 1.5.) 

g. The plane passing through one edge of length a 
and the perpendicular of length b divides the tetrahedron 
into two more accessible congruent tetrahedra, each with 
base ab/2 and height aj 2. Hence the required volume 

1 ab a a2b 
= 2· -· -·- = -· 

3 2 2 6 

10. The base of the pyramid is a polygon with n sides. 
In the case (a) the n lateral edges of the pyramid are 
equal; in the case (b) the altitudes (drawn from the 
apex) of its n lateral faces are equal. If we draw the alti­
tude of the pyramid and join its foot to the n vertices of 
the base in the case (a), but to the feet of the altitudes 
of the n lateral faces in the case (b), we obtain, in both 
cases, n right triangles of which the altitude (of the 
pyramid) is a common side: I say that these n right tri­
angles are congruent. In fact the hypotenuse [a lateral 
edge in the case (a), a lateral altitude in the case (b)] 
is of the same length in each, according to the definitions 
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laid down in the proposed problem; we have just men­
tioned that another side (the altitude of the pyramid) 
and an angle (the right angle) are common to all. In the 
n congruent triangles the third sides must also be equal; 
they are drawn from the same point (the foot of the 
altitude) in the same plane (the base): they form n 
radii of a circle which is circumscribed about, or in­
scribed into, the base of the pyramid, in the cases (a) and 
(b), respectively. [In the case (b) it remains to show, 

however, that the n radii mentioned are perpendicular 
to the respective sides of the base; this follows from a 
well-known theorem of solid geometry on projections.] 

It is most remarkable that a plane figure, the isosceles 
triangle, may have two different analogues in solid 
geometry. 

11. Observe that the first equation is so related to the 
last as the second is to the third: the coefficients on the 
left-hand sides are the same, but in opposite order, 
whereas the right-hand sides are opposite. Add the first 
equation to the last and the second to the third: 

6(x + u) + w(y + v) = o, 
10(x + u) + 10(y + v) = o. 

This can be regarded as a system of two linear equations 
for two unknowns, namely for x + u andy + v, and easily 
yields 

X+ U = O, y + v = 0. 

Substituting -x for u and -y for v in the first two equa­
tions of the original system, we find 

-4x + 4Y = 16 
6x- 2y =- 16. 

This is a simple system which yields 

X = -2, y = 2, U =<> .. , v= -2 
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12. Between the start and the meeting point each of 
the friends traveled the same distance. (Remember, dis­
tance =velocity X time.) We distinguish two parts in 
the condition: 

Bob traveled as much as Paul: 

Paul traveled as much as Peter: 

The second equation yields 

(c- p)t1 = (c- p)t3 . 

We assume, of course, that the car travels faster than a 
pedestrian, c > p. It follows 

that is, Peter walks just as much as Paul. From the 
first equation, we find that 

~ = c+p 
tz c- p 

which is, of course, also the value for t1 jt2 • Hence we 
obtain the answers: 

(a) 

(b) 

c(t1 - t2 + ts) _ c(c + gp) 
ft + tz + tg - gc + p 

tz _ c- p 
t1 + t2 + ts - gc + p 

(c) In fact, o < p <c. There are two extreme cases: 

If p = o (a) yields c/ 3 and (b) yields 1/ 3 
If p = c (a) yields c and (b) yields o. 

These results are easy to see without computation. 
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13. The condition is easily split into four parts ex­
pressed by the four equations 

a-d+ bg-1 = 85 
a+ b = 76 

a+ d + bg = 84 
3a = r26. 

The last equation yields a = 42, then the second b = 34· 
Adding the remaining two equations (to eliminate d), 
we obtain 

2a + b(g-1 +g) = 16g. 

Since a and b are already known, we have here a quad­
ratic equation for g. It yields 

g= 2, d = -26 or g = 1/2, 

The progressions are 

68, 42, 16 
or 

d = 25· 

68,34· 17 

14. If a and -a are the roots having the least absolute 
value, they will stand next to each other in the progres­
sion which will, therefore, be of the form 

-3a, -a, a, 3a. 

Hence the left-hand side of the proposed equation must 
have the form 

(x2 - a2)(x2 - ga2 ). 

Carrying out the multiplication and comparing coeffi­
cients of like powers, we obtain the system 

1oa2 =3m+ 2, 

ga4 = m2. 
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Elimination of a yields 

19m2 - 108m - 36 = o. 

Hence m = 6 or -6/19. 
15. Let a7 b, and c denote the sides, the last being the 

hypotenuse. The three parts of the condition are ex­
pressed by 

a+b+c =6o 
a2 + b2 = c2 

ab = I2c. 

Observing that 

(a + b)2 = a2 + b2 + 2ab 

we obtain 
(6o - c) 2 = c2 + 24c. 

Hence c = 25 and either a= 15, b = 20 or a= 20, b = 15 
(no difference for the triangle). 

16. The three parts of the condition are expressed by 

• X 
Slna=-, 

a 

• (3 X 
Sill = b, 

c2 = a 2 + b2 - 2ab cos 'Y 

The elimination of a and b yields 

c2 sin2 a sin2 (3 
x2 = sin2 a + sin2 (3 - 2 sin a sin (3 cos 'Y 

17. We conjecture that 

I 2 n I 
2! + 3! + • • • + (n +I)!= I - (n +I)! • 

Following the pattern of INDUCTION AND MATHEMATICAL 

INDUCTION, we ask: Does the conjectured formula remain 
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true when we pass from the value n to the next value 
n + 1? Along with the formula above we should have 

I 2 n n+I I 

2! + 3! + · · · + (n +I)!+ (n + 2)! =I- (n + 2)! 

Check this by subtracting from it the former: 

n+I 
(n + 2)! = I + I 

(n + 2)! (n +I)! 

which boils down to 

n + 2 I - -:---:----:-: 
(n+2)! (n+I)! 

and this last equation is obviously true for n = 1, 2, 3, ... 
hence, by following the pattern referred to above, we can 
prove our conjecture. 

18. In the nth line the right-hand side seems to be n3 
and the left-hand side a sum of n terms. The final term 
of this sum is the mth odd number, or 2m - 1, where 

n(n + I) 
m=1+2+3+ .. ·+n= · 

2 ' 

see INDUCTION AND MATHEMATICAL INDUCTION, 4· Hence 
the final term of the sum on the left-hand side should be 

2m - 1 = n2 + n - 1. 

We can derive hence the initial term of the sum con­
sidered in two ways: going back n- 1 steps from the 
final term, we find 

(n2 + n- 1)- 2(n- 1) = n2- n + 1 

whereas, advancing one step from the final term of the 
foregoing line, we find 

[(n - 1)2 + (n- 1) - 1] + 2 
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which, after routine simplification, boils down to the 
same: good! We assert therefore that 

(n2- n + 1) + (n2- n + 3) + · · · + (n2 + n- 1) = n3 

where the left-hand side indicates the sum of n successive 
terms of an arithmetic progression the difference of 
which is 2. If the reader knows the rule for the sum of 
such a progression (arithmetic mean of the initial term 
and the final term, multiplied by the number of terms), 
he can verify that 

(n2 - n + r) + (n2 + n - r) n = n3 

2 

and so prove the assertion. 
(The rule quoted can be easily proved by a picture 

little different from Fig. 18.) 
19. The length of the perimeter of the regular hexagon 

with side n is 6n. Therefore, this perimeter consists of 
6n boundary lines of length 1 and contains 6n vertices. 
Therefore, in the transition from n- 1 to nJ V increases 
by 6n units, and so 

V = 1 + 6(1 + 2 + 3 + · · · + n) = 3n2 + 3n + 1; 

see INDUCTION AND MATHEMATICAL INDUCTION, 4· By 3 
diagonals through its center the hexagon is divided into 
6 (large) equilateral triangles. By inspection of one of 
these 

T = 6(1 + 3 + 5 + · · · + 2n- 1) = 6n2 

(rule for the sum of an arithmetic progression, quoted in 
the solution of Problem 18). The T triangles have jointly 
3 T sides. In this total 3 T each internal line of division of 
length 1 is counted twice, whereas the 6n lines along the 
perimeter of the hexagon are counted but once. Hence 

2L = 3T + 6nJ L = gn2 + 3n. 

07 L 
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(For the more advanced reader: it follows from Euler's 
theorem on polyhedra that T + V = L + 1. Verify this 
relation!) 

20. Here is a well-ordered array of analogous prob­
lems: Compute Am Bn, Cn~ Dn and En. Each of these quan­
tities represents the number of ways to pay the amount 
of n cents; the difference is in the coins used: 

An only cents 
Bn cents and nickels 
en cents, nickels, and dimes 
Dn cents, nickels, dimes, and quarters 
En cents, nickels, dimes, quarters, and half dollars. 

The symbols En (reason now clear) and An were used 
before. 

All ways and manners to pay the amount of n cents 
with the five kinds of coin are enumerated by En. We 
may, however, distinguish two possibilities: 

First. No half dollar is used. The number of such ways 
to pay is Dn, by definition. 

Second. A half dollar (possibly more) is used. After 
the first half dollar is laid on the counter, there remains 
the amount of n- 50 cents to pay, which can be done in 
exactly En_50 ways. 

We infer that 

Similarly 

E,. = D .. + En-5o· 

Dn = C .. + Dn--25, 
Cn = Bn + Cn-10, 

Bn = An + Bn-5· 

A little attention shows that these formulas remain 
valid if we set 

A 0 = B0 = C0 = D0 = E0 = 1 
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(which obviously makes sense) and regard any one of the 
quantities An, Bn ... En as equal to o when its subscript 
happens to be negative. (For example, E25 = D25 , as 
can be seen immediately, and this agrees with our first 
formula since E25 _ 50 = E_25 = o.) 

Our formulas allow us to compute the quantities con­
sidered recursively, that is, by going back to lower values 
of n or to former letters of the alphabet. For example, 
we can compute C30 by simple addition if C20 and B30 

are already known. In the table below the initial row, 
headed by An, and the initial column, headed by o, con­
tain only numbers equal to 1. (Why?) Starting from these 
initial numbers, we compute the others recursively, by 
simple additions: any other number of the table is equal 
either to the number above it or to the sum of two 
numbers: the number above it and another at the proper 
distance to the left. For example, 

Cgo = Bgo + C2o = 7 + 9 = 16 

The computation is carried through till E50 =50: you 
can pay 50 cents in exactly 50 different ways. Carrying it 
further, the reader can convince himself that E100 = 292: 
you can change a dollar in 292 different ways. 

n 0 5 10 15 20 25 30 35 40 45 50 

An 1 1 1 1 1 1 1 1 1 1 1 
Bn 1 2 3 4 5 6 7 8 9 10 11 
en 1 2 4 6 9 12 16 20 25 30 36 
Dn 1 2 4 6 9 13 18 24 31 39 49 
En 1 2 4 6 9 13 18 24 31 39 50 
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